Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Carcinogenesis ; 45(5): 288-299, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466106

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental carcinogens accountable to developing skin cancers. Recently, we reported that exposure to benzo[a]pyrene (B[a]P), a common PAH, causes epigenetic and metabolic alterations in the initiation, promotion and progression of non-melanoma skin cancer (NMSC). As a follow-up investigation, this study examines how dietary triterpenoid ursolic acid (UA) regulates B[a]P-driven epigenetic and metabolic pathways in SKH-1 hairless mice. Our results show UA intercepts against B[a]P-induced tumorigenesis at different stages of NMSC. Epigenomic cytosines followed by guanine residues (CpG) methyl-seq data showed UA diminished B[a]P-mediated differentially methylated regions (DMRs) profiles. Transcriptomic RNA-seq revealed UA revoked B[a]P-induced differentially expressed genes (DEGs) of skin cancer-related genes, such as leucine-rich repeat LGI family member 2 (Lgi2) and kallikrein-related peptidase 13 (Klk13), indicating UA plays a vital role in B[a]P-mediated gene regulation and its potential consequences in NMSC interception. Association analysis of DEGs and DMRs found that the mRNA expression of KLK13 gene was correlated with the promoter CpG methylation status in the early-stage comparison group, indicating UA could regulate the KLK13 by modulating its promoter methylation at an early stage of NMSC. The metabolomic study showed UA alters B[a]P-regulated cancer-associated metabolisms like thiamin metabolism, ascorbate and aldarate metabolism during the initiation phase; pyruvate, citrate and thiamin metabolism during the promotion phase; and beta-alanine and pathothenate coenzyme A (CoA) biosynthesis during the late progression phase. Taken together, UA reverses B[a]P-driven epigenetic, transcriptomic and metabolic reprogramming, potentially contributing to the overall cancer interception against B[a]P-mediated NMSC.


Assuntos
Benzo(a)pireno , Metilação de DNA , Epigênese Genética , Camundongos Pelados , Neoplasias Cutâneas , Triterpenos , Ácido Ursólico , Animais , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Benzo(a)pireno/toxicidade , Triterpenos/farmacologia , Camundongos , Epigênese Genética/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Carcinógenos Ambientais/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/induzido quimicamente
2.
J Ophthalmol ; 2023: 7680659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455794

RESUMO

Objective: To evaluate the influence of pilocarpine eyedrops on the ocular biometric parameters and whether these parameter changes affect the intraocular lens (IOL) power calculation in patients with primary angle-closure glaucoma (PACG). Methods: Twenty-two PACG patients and fifteen normal subjects were enrolled. Ocular biometric parameters including the axial length (AL), anterior chamber depth (ACD), lens thickness (LT), mean keratometry (Km), and white-to-white distance (WTW) were measured by using a Lenstar LS 900 device before and at least 30 minutes after instillation of 2% pilocarpine eyedrops. Lens position (LP) was calculated, and the IOL power prediction based on the ocular biometric parameters was performed using the Barrett Universal II, Haigis, Hoffer Q, Holladay I, or SRK/T formulas before and after pilocarpine application. Results: In both PACG and normal groups, pilocarpine eyedrops induced a slight but statistically significant increase in the mean AL (0.01 mm for both groups) and mean LT (0.02 mm and 0.03 mm, respectively) but a significant decrease in the mean ACD (0.03 mm and 0.05 mm, respectively) and mean LP (0.02 mm and 0.04 mm, respectively). No significant changes in the mean Km and WTW were noticed in both groups. In addition, the IOL power calculation revealed insignificant changes before and after the pilocarpine instillation in both groups, regardless of the formula used. Conclusions: Pilocarpine eyedrops can induce slight changes in the ocular biometric parameters including the AL, ACD, LT, and LP. However, these parameter changes will not result in a significant difference in IOL power estimation.

3.
Eur J Pharmacol ; 953: 175866, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331680

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in the United States. Emerging evidence suggests that mitochondrial metabolism and epigenetics play an important role in the development and progression of DN and its complications. For the first time, we investigated the regulation of cellular metabolism, DNA methylation, and transcriptome status by high glucose (HG) in the kidney of leptin receptor-deficient db/db mice using multi-omics approaches. METHODS: The metabolomics was performed by liquid-chromatography-mass spectrometry (LC-MS), while epigenomic CpG methylation coupled with transcriptomic gene expression was analyzed by next-generation sequencing. RESULTS: LC-MS analysis of glomerular and cortex tissue samples of db/db mice showed that HG regulated several cellular metabolites and metabolism-related signaling pathways, including S-adenosylmethionine, S-adenosylhomocysteine, methionine, glutamine, and glutamate. Gene expression study by RNA-seq analysis suggests transforming growth factor beta 1 (TGFß1) and pro-inflammatory pathways play important roles in early DN. Epigenomic CpG methyl-seq showed HG revoked a list of differentially methylated regions in the promoter region of the genes. Integrated analysis of DNA methylation in the promoter regions of genes and gene expression changes across time points identified several genes persistently altered in DNA methylation and gene expression. Cyp2d22, Slc1a4, and Ddah1 are some identified genes that could reflect dysregulated genes involved in renal function and DN. CONCLUSION: Our results suggest that leptin receptor deficiency leading to HG regulates metabolic rewiring, including SAM potentially driving DNA methylation and transcriptomic signaling that could be involved in the progression of DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Camundongos , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Epigênese Genética , Epigenômica , Rim/metabolismo , Camundongos Endogâmicos , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
4.
Carcinogenesis ; 44(5): 436-449, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37100755

RESUMO

Non-melanoma skin cancer (NMSC) is the most common cancer in the world. Environmental exposure to carcinogens is one of the major causes of NMSC initiation and progression. In the current study, we utilized a two-stage skin carcinogenesis mouse model generated by sequential exposure to cancer-initiating agent benzo[a]pyrene (BaP) and promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA), to study epigenetic, transcriptomic and metabolic changes at different stages during the development of NMSC. BaP/TPA caused significant alterations in DNA methylation and gene expression profiles in skin carcinogenesis, as evidenced by DNA-seq and RNA-seq analysis. Correlation analysis between differentially expressed genes and differentially methylated regions found that the mRNA expression of oncogenes leucine rich repeat LGI family member 2 (Lgi2), kallikrein-related peptidase 13 (Klk13) and SRY-Box transcription factor (Sox5) are correlated with the promoter CpG methylation status, indicating BaP/TPA regulates these oncogenes through regulating their promoter methylation at different stages of NMSC. Pathway analysis identified that the modulation of macrophage-stimulating protein-recepteur d'origine nantais and high-mobility group box 1 signaling pathways, superpathway of melatonin degradation, melatonin degradation 1, sirtuin signaling and actin cytoskeleton signaling pathways are associated with the development of NMSC. The metabolomic study showed BaP/TPA regulated cancer-associated metabolisms like pyrimidine and amino acid metabolisms/metabolites and epigenetic-associated metabolites, such as S-adenosylmethionine, methionine and 5-methylcytosine, indicating a critical role in carcinogen-mediated metabolic reprogramming and its consequences on cancer development. Altogether, this study provides novel insights integrating methylomic, transcriptomic and metabolic-signaling pathways that could benefit future skin cancer treatment and interception studies.


Assuntos
Carcinógenos Ambientais , Melatonina , Neoplasias Cutâneas , Camundongos , Animais , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Carcinogênese/genética , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Acetato de Tetradecanoilforbol , Epigênese Genética
5.
Neural Regen Res ; 18(10): 2301-2306, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37056151

RESUMO

Mesenchymal stem cells have neuroprotective effects that limit damage to the retina and photoreceptors, and which may be mediated by extracellular vesicles (or exosomes) released by mesenchymal stem cells. To investigate the neuroprotective effect of extracellular vesicles derived from umbilical cord mesenchymal stem cells on glaucoma, we established rat models of chronic ocular hypertension by injecting conjunctival fibroblasts into the anterior chamber to mimic optic nerve injury caused by glaucoma. One week after injury, extracellular vesicles derived from umbilical cord-derived mesenchymal stem cells were injected into the vitreous cavity. We found that extracellular vesicles derived from mesenchymal stem cells substantially reduced retinal damage, increased the number of retinal ganglion cells, and inhibited the activation of caspase-3. These findings suggest that mesenchymal stem cell-derived extracellular vesicles can help alleviate optic nerve injury caused by chronic ocular hypertension, and this effect is achieved by inhibiting cell apoptosis.

6.
Cancer Prev Res (Phila) ; 16(6): 321-332, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36867722

RESUMO

Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase (HDAC) inhibitor with anticancer effects via epigenetic and non-epigenetic mechanisms. The role of SAHA in metabolic rewiring and epigenomic reprogramming to inhibit pro-tumorigenic cascades in lung cancer remains unknown. In this study, we aimed to investigate the regulation of mitochondrial metabolism, DNA methylome reprogramming, and transcriptomic gene expression by SAHA in lipopolysaccharide (LPS)-induced inflammatory model of lung epithelial BEAS-2B cells. LC/MS was used for metabolomic analysis, while next-generation sequencing was done to study epigenetic changes. The metabolomic study reveals that SAHA treatment significantly regulated methionine, glutathione, and nicotinamide metabolism with alteration of the metabolite levels of methionine, S-adenosylmethionine, S-adenosylhomocysteine, glutathione, nicotinamide, 1-methylnicotinamide, and nicotinamide adenine dinucleotide in BEAS-2B cells. Epigenomic CpG methyl-seq shows SAHA revoked a list of differentially methylated regions in the promoter region of the genes, such as HDAC11, miR4509-1, and miR3191. Transcriptomic RNA sequencing (RNA-seq) reveals SAHA abrogated LPS-induced differentially expressed genes encoding proinflammatory cytokines, including interleukin 1α (IL1α), IL1ß, IL2, IL6, IL24, and IL32. Integrative analysis of DNA methylome-RNA transcriptome displays a list of genes, of which CpG methylation correlated with changes in gene expression. qPCR validation of transcriptomic RNA-seq data shows that SAHA treatment significantly reduced the LPS-induced mRNA levels of IL1ß, IL6, DNA methyltransferase 1 (DNMT1), and DNMT3A in BEAS-2B cells. Altogether, SAHA treatment alters the mitochondrial metabolism, epigenetic CpG methylation, and transcriptomic gene expression to inhibit LPS-induced inflammatory responses in lung epithelial cells, which may provide novel molecular targets to inhibit the inflammation component of lung carcinogenesis. PREVENTION RELEVANCE: Inflammation increases the risk of lung cancer and blocking inflammation could reduce the incidence of lung cancer. Herein, we demonstrate that histone deacetylase inhibitor suberoylanilide hydroxamic acid regulates metabolic rewiring and epigenetic reprogramming to attenuate lipopolysaccharide-driven inflammation in lung epithelial cells.


Assuntos
Lipopolissacarídeos , Neoplasias Pulmonares , Humanos , Vorinostat , Lipopolissacarídeos/farmacologia , Interleucina-6 , Transcriptoma , Ácidos Hidroxâmicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Pulmão , Inflamação , DNA , Células Epiteliais , Glutationa/genética , Metionina
7.
Food Chem Toxicol ; 174: 113656, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36758788

RESUMO

Chronic cigarette smoke condensate (CSC) exposure is one of the preventable risk factors in the CS-induced lung cancer. However, understanding the mechanism of cellular transformation induced by CS in the lung remains limited. We investigated the effect of long term exposure of CSC in human normal lung epithelial Beas-2b cells, and chemopreventive mechanism of organosulphur garlic compounds, diallyl sulphide (DAS) and diallyl disulphide (DADS) using Next Generation Sequencing (NGS) transcriptomic analysis. CSC regulated 1077 genes and of these 36 genes are modulated by DAS while 101 genes by DADS. DAS modulated genes like IL1RL1 (interleukin-1 receptor like-1), HSPA-6 (heat shock protein family A, member 6) while DADS demonstrating ADTRP (Androgen-Dependent TFPI Regulating Protein), ANGPT4 (Angiopoietin 4), GFI1 (Growth Factor-Independent 1 Transcriptional Repressor), TBX2 (T-Box Transcription Factor 2), with some common genes like NEURL-1 (Neuralized E3-Ubiquitin Protein Ligase 1), suggesting differential effects between these two garlic compounds. They regulate genes by influencing pathways including HIF-1alpha, STAT-3 and matrix metalloproteases, contributing to the chemoprotective ability of organosulfur garlic compounds against CSC-induced cellular transformation. Taken together, we demonstrated CSC induced global gene expression changes pertaining to cellular transformation which potentially can be delayed with dietary chemopreventive phytochemicals like DS and DADS influencing alterations at the transcriptomic level.


Assuntos
Compostos Alílicos , Fumar Cigarros , Alho , Humanos , Compostos Alílicos/farmacologia , Células Epiteliais , Alho/química , Pulmão , Proteínas de Membrana/metabolismo , Nicotiana , Compostos de Enxofre/farmacologia , Transcriptoma
8.
Int J Ophthalmol ; 16(1): 108-114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36659941

RESUMO

AIM: To investigate the treatment pattern and safety of tafluprost for glaucoma and ocular hypertension (OH) in clinical practice in China. METHODS: This post-marketing observational study included patients who received tafluprost to lower intraocular pressure (IOP) within 30d between September 2017 and March 2020 in 20 hospitals in China. Adverse drug reactions (ADRs) during tafluprost treatment and within 30d after the treatment were collected. RESULTS: A total of 2544 patients were included in this study, of them 58.5% (1488/2544) had primary open angle glaucoma (POAG), 21.9% (556/2544) had OH and 19.7% (500/2544) used tafluprost for other reasons. Of 359 ADRs occurred in 10.1% (258/2544) patients, and no serious adverse event occurred. The most common ADR was conjunctival hyperemia (128 ADRs in 124 patients, 4.9%). Totally 1670 participants (65.6%) combined tafluprost with carbonic anhydrase inhibitors (CAIs; 37.1%, 620/1670), sympathomimetics (33.5%, 559/1670), ß-blockers (33.2%, 555/1670), other prostaglandin analogs (PGAs; 15.6%, 260/1670) and other eye drops (15.1%, 253/1670). The highest incidence of conjunctival hyperemia was noted in patients who received tafluprost in combination with other PGAs (23 ADRs in 23 patients, 8.8%, 23/260) and the lowest was in combination with CAIs (16 ADRs in 16 patients, 2.6%, 16/620). Tafluprost was applied in primary angle-closure glaucoma (41.6%, 208/500), after glaucoma surgery (17.8%, 89/500) and after non-glaucoma surgery (15.8%, 79/500). CONCLUSION: Tafluprost is safe for POAG and OH, and tolerable when combined with other eye drops and under various clinical circumstances.

9.
Exp Ther Med ; 25(1): 19, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36561619

RESUMO

Glaucoma is one of the leading causes of irreversible blindness worldwide. As such, neuroprotective therapy is essential for the treatment of this disease. Leukemia inhibitory factor (LIF) is a member of the IL-6 cytokine family and the LIF signaling pathway is considered to be one of the major endogenous factors mediating neuroprotection in the retina. Therefore, the present study aimed to investigate the possible effects of LIF in acute ocular hypertension (AOH). The intraocular pressure in rat eyes was raised to 110 mmHg for 1 h by infusing the anterior chamber with normal saline to establish the AOH model. In the treatment group, LIF was then injected into the vitreous cavity after AOH was ceased. The retinal tissues were obtained after the termination of AOH, and H&E staining was conducted to assess the morphological damage. The number of retinal ganglion cells (RGCs) was counted using the Fluoro-Gold retrograde staining method. TUNEL staining was used to determine the extent of apoptosis among the retinal cells. In addition, the protein expression levels of cleaved caspase-3, poly (ADP-ribose) polymerase (PARP), STAT3 and components of the AKT/mTOR/70-kDa ribosomal protein S6 kinase (p70S6K) signaling pathway were examined by western blotting. The results showed that AOH induced tissue swelling and structural damage in the retina, which were reversed by LIF injection. In the LIF treatment group, RGC loss was significantly inhibited and the quantity of TUNEL-stained cells was also significantly reduced, whereas the expression of cleaved caspase-3 and PARP was decreased. Furthermore, increased phosphorylation of STAT3, AKT, mTOR and p70S6K was observed after LIF treatment. By contrast, pretreatment with the STAT3 inhibitor C188-9 or the PI3K/AKT/mTOR inhibitor LY3023414 reversed the LIF-induced inhibition of RGC loss. These results suggested that exogenous LIF treatment inhibited the retinal damage induced by AOH, which was associated with the activation of STAT3 and mTOR/p70S6K signaling. Therefore, LIF may serve a role in neuroprotection for glaucoma treatment.

10.
Foods ; 11(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36429227

RESUMO

In order to improve the water solubility and stability of lutein, soy protein isolates (SPI) and their hydrolysates via pepsin (PSPI) and alcalase (ASPI) were used as nanocarriers for lutein to fabricate the lutein-loaded nanoparticles (LNPS) of SPI, PSPI, and ASPI. The encapsulation properties, light, and in vitro digestive stability of lutein in nanoparticles, and protein-lutein interactions were investigated. Compared with SPI-LNPS and ASPI-LNPS, PSPI-LNPS was characterized by uniform morphology (approximately 115 nm) with a lower polydispersity index (approximately 0.11) and higher lutein loading capacity (17.96 µg/mg protein). In addition, PSPI-LNPS presented the higher lutein retention rate after light exposure (85.05%) and simulated digestion (77.73%) than the unencapsulated lutein and SPI-LNPS. Fluorescence spectroscopy revealed that PSPI had stronger hydrophobic interaction with lutein than SPI, which positively correlated with their beneficial effects on the light and digestive stability of lutein. This study demonstrated that PSPI possessed significant potential for lutein delivery.

11.
AAPS J ; 24(6): 115, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324037

RESUMO

Overexposure to ultraviolet radiation and environmental carcinogens drive skin cancer development through redox imbalance and gene mutation. Antioxidants such as triterpenoids have exhibited anti-oxidative and anti-inflammatory potentials to alleviate skin carcinogenesis. This study investigated the methylome and transcriptome altered by tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) or TPA with 2-cyano 2,3-dioxoolean-1,9-dien-28-oic acid (CDDO). The results show that CDDO blocks TPA-induced transformation dose dependently. Several differential expressed genes (DEGs) involved in skin cell transformation, while counteracted by CDDO, were revealed by differential expression analysis including Lyl1, Lad1, and Dennd2d. In CpG methylomic profiles, the differentially methylated regions (DMRs) in the promoter region altered by TPA while showing the opposite methylation status in the CDDO treatment group were identified. The correlation between DNA methylation and RNA expression has been established and DMRs showing inverse correlation were further studied as potential therapeutic targets. From the CpG methylome and transcriptome results, CDDO significantly restored gene expression of NAD(P)H:quinone oxidoreductase 1 (Nqo1) inhibited by TPA by decreasing their promoter CpG methylation. Ingenuity Pathways Analysis (IPA) shows that CDDO neutralized the effect of TPA through modulating cell cycles, cell migration, and inflammatory and immune response regulatory pathways. Notably, Tumor Necrosis Factor Receptor 2 (TNFR2) signaling was significantly downregulated by CDDO potentially contributing to prevention of TPA-induced cell transformation. Overall, incorporating the transcriptome, CpG methylome, and signaling pathway network, we reveal potential therapeutic targets and pathways by which CDDO could reverse TPA-induced carcinogenesis. The results could be useful for future human study and targets development for skin cancer.


Assuntos
Neoplasias Cutâneas , Triterpenos , Humanos , Epigenoma , Acetato de Tetradecanoilforbol/toxicidade , Triterpenos/farmacologia , Transcriptoma , Raios Ultravioleta , Transformação Celular Neoplásica , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
12.
Chem Res Toxicol ; 35(7): 1220-1233, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35700067

RESUMO

Sulforaphane (SFN) is a potent anticancer agent which could protect the skin from ultraviolet (UV) radiation-induced insults. Currently, the metabolic rewiring and epigenetic reprograming induced by UVB and the role of SFN in UVB-mediated skin cell transformation remain largely unknown. Herein, we study the metabolome, epigenome, and transcriptome of human keratinocytes (HaCaT cells) exposed to UVB with or without SFN using liquid chromatography-mass spectroscopy, DNA methylation sequencing, and RNA sequencing. UVB increases intracellular reactive oxygen species (ROS) and SFN enhances ROS acutely in post-UVB-exposed HaCaT cells. UVB and SFN alter multiple metabolites and metabolism-related signaling pathways. Pathway analysis shows that UVB impacts numerous signaling pathways including STAT3, inhibition of matrix metalloproteases, and TGF-ß, among others. DNA/CpG methylation analysis shows that SFN could partially reverse some of the alterations of UVB-induced CpG methylome. Integrating RNA-seq and Methyl-seq data, starburst plots show the correlation of mRNA expression and CpG methylation status. The potential linkages between the metabolome, CpG methylome, and transcriptome suggest that metabolites produced during metabolism act as cofactors or substrates for catalytic epigenetic modification and transcriptional regulation. These results indicate that UVB drives metabolic rewiring, epigenetic reprograming, and phenotypic transcriptomic alterations and SFN would block or attenuate many of these aberrations, potentially contributing to the overall protective effect of SFN against UVB-induced skin damage.


Assuntos
Isotiocianatos , Queratinócitos , Apoptose , Epigênese Genética , Humanos , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sulfóxidos , Raios Ultravioleta
13.
Food Res Int ; 157: 111494, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761714

RESUMO

The impact of heat treatment at different temperatures on the interaction of ß-lactoglobulin (ß-Lg) and anthocyanin-3-O-glucoside (C3G) was studied. Heat treatment and the addition of C3G changed the secondary structure of ß-Lg with decreasing ß-sheets and increasing random coils. Interactions between C3G and ß-Lg were mainly via hydrogen bonds and van der Waals forces at 25 °C. The elevated temperature promoted hydrophobic interactions between C3G and ß-Lg due to an increase in the hydrophobic groups and amino groups on the surface of ß-Lg molecules. The addition of ß-Lg to the C3G eliminated heat-induced thermal degradation of C3G. The ß-Lg-C3G interactions accompanied with increased particle size and constant zeta potential could increase the antioxidant capacity of C3G approximately by 4% to 10% and protect the colour of C3G from degradation under heat treatment. The C3G bioaccessibility with ß-Lg addition increased by 26.08%, 33.45%, 83.09%, 72.27%, and 354.62% compared with C-25, C-60, C-85, C-100, and C-121, respectively. The protective effect of the non-covalent interactions on C3G at high temperatures (85 °C to 121 °C) was significantly stronger than at 25 °C and 60 °C. The application of ß-Lg in foodstuffs could enhance the antioxidant activity and bioaccessibility of C3G.


Assuntos
Antocianinas , Lactoglobulinas , Antocianinas/química , Antioxidantes/farmacologia , Glucosídeos/metabolismo , Temperatura Alta , Lactoglobulinas/química
14.
Mol Nutr Food Res ; 66(12): e2200028, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35429118

RESUMO

SCOPE: Butyrate (B) is a short-chain fatty acid produced by dietary fiber, known to inhibit histone deacetylases (HDACs) and possess cancer-preventive/anticancer effects. However, the role of B in metabolic rewiring, epigenomic reprogramming, transcriptomic network, NRF2 signaling, and eliciting cancer-preventive effects in colorectal cancer (CRC) HCT116 cell remains unclear. METHODS AND RESULTS: Sodium butyrate (NaB) dose-dependently inhibits the growth of CRC HCT116 cells. NaB inhibits NRF2/NRF2-target genes and blocks NRF2-ARE signaling. NaB increases NRF2 negative regulator KEAP1 expression through inhibiting its promoter methylation. Associative analysis of DEGs (differentially expressed genes) from RNA-seq and DMRs (differentially methylated regions) from CpG methyl-seq identified the tumor suppressor gene ABCA1 and tumor promote gene EGR3 are correlated with their promoters' CpG methylation indicating NaB regulates cancer markers through modulating their promoter methylation. NaB activated the mitochondrial tricarboxylic acid (TCA) cycle while inhibited the methionine metabolism which are both tightly coupled to the epigenetic machinery. NaB regulates the epigenetic enzymes/genes including DNMT1, HAT1, KDM1A, KDM1B, and TET1. Altogether, B's regulation of metabolites coupled to the epigenetic enzymes illustrates the potential underlying biological connectivity between metabolomics and epigenomics. CONCLUSION: B regulates KEAP1/NRF2 signaling, drives metabolic rewiring, CpG methylomic, and transcriptomic reprogramming contributing to the overall cancer-prevention/anticancer effect in the CRC cell model.


Assuntos
Neoplasias do Colo , Epigenômica , Ácido Butírico/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Metilação de DNA , Epigênese Genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
15.
AAPS J ; 24(1): 30, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35043283

RESUMO

Fucoxanthin (FX) is a carotenoid with many pharmaceutical properties due to its antioxidant/anti-inflammatory and epigenetic effects. NFE2L2 is involved in the defense against oxidative stress/inflammation-mediated diseases, like anticancer effects elicited by phytochemicals including FX. However, the role of FX and NFE2L2 in metabolic rewiring, epigenomic reprogramming, and transcriptomic network in blocking pro-tumorigenic signaling and eliciting cancer-protective effects remains unknown. Herein, we utilized multi-omics approaches to evaluate the role of NFE2L2 and the impact of FX on tumor promoter TPA-induced skin cell transformation. FX blocked TPA-induced ROS and oxidized GSSG/reduced GSH in Nfe2l2wild-type(WT) but not Nfe2l2-knockdown (KD) cells. Both Nfe2l2 KD and TPA altered cellular metabolisms and metabolites which are tightly coupled to epigenetic machinery. The suppressive effects of FX on TPA-enhancedSAM/SAH was abrogated by Nfe2l2 KD indicating Nfe2l2 plays a critical role in FX-mediated metabolic rewiring and its potential consequences on epigenetic reprogramming. Epigenomic CpG methyl-seq revealed that FX attenuated TPA-induced differentially methylated regions (DMRs) of Uhrf1 and Dnmt1 genes. Transcriptomic RNA-seq showed that FX abrogated TPA-induced differentially expressed genes (DEGs) of Nfe2l2-related genes Nqo1, Ho1, and Keap1. Associative analysis of DEGs and DMRs identified that the mRNA expressions of Uhrf1 and Dnmt1 were correlated with the promoter CpG methylation status. Chromatin immunoprecipitation assay showed that FX restored Uhrf1 expression by regulating H3K27Me3 enrichment in the promoter region. In this context, FX/Nfe2l2's redox signaling drives metabolic rewiring causing epigenetic and transcriptomic reprogramming potentially contributing to the protection of TPA-induced JB6 cellular transformation skin cancer model. Graphical abstract.


Assuntos
Epigênese Genética , Fator 2 Relacionado a NF-E2/genética , Neoplasias Cutâneas/prevenção & controle , Xantofilas/farmacologia , Animais , Antioxidantes/farmacologia , Linhagem Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Camundongos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol
16.
Mol Carcinog ; 61(1): 111-121, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34727410

RESUMO

Ursolic acid (UA) is a triterpenoid phytochemical with a strong anticancer effect. The metabolic rewiring, epigenetic reprogramming, and chemopreventive effect of UA in prostate cancer (PCa) remain unknown. Herein, we investigated the efficacy of UA in PCa xenograft, and its biological effects on cellular metabolism, DNA methylation, and transcriptomic using multi-omics approaches. The metabolomics was quantified by liquid-chromatography-mass spectrometry (LC-MS) while epigenomic CpG methylation in parallel with transcriptomic gene expression was studied by next-generation sequencing technologies. UA administration attenuated the growth of transplanted human VCaP-Luc cells in immunodeficient mice. UA regulated several cellular metabolites and metabolism-related signaling pathways including S-adenosylmethionine (SAM), methionine, glucose 6-phosphate, CDP-choline, phosphatidylcholine biosynthesis, glycolysis, and nucleotide sugars metabolism. RNA-seq analyses revealed UA regulated several signaling pathways, including CXCR4 signaling, cancer metastasis signaling, and NRF2-mediated oxidative stress response. Epigenetic reprogramming study with DNA Methyl-seq uncovered a list of differentially methylated regions (DMRs) associated with UA treatment. Transcriptome-DNA methylome correlative analysis uncovered a list of genes, of which changes in gene expression correlated with the promoter CpG methylation status. Altogether, our results suggest that UA regulates metabolic rewiring of metabolism including SAM potentially driving epigenetic CpG methylation reprogramming, and transcriptomic signaling resulting in the overall anticancer chemopreventive effect.


Assuntos
Metilação de DNA/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Triterpenos/administração & dosagem , Animais , Linhagem Celular Tumoral , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Neoplasias da Próstata/genética , Análise de Sequência de RNA , Triterpenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido Ursólico
17.
Free Radic Biol Med ; 179: 328-336, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359432

RESUMO

Biological redox signaling plays an important role in many diseases. Redox signaling involves reductive and oxidative mechanisms. Oxidative stress occurs when reductive mechanism underwhelms oxidative challenges. Cellular oxidative stress occurs when reactive oxygen/nitrogen species (RO/NS) exceed the cellular reductive/antioxidant capacity. Endogenously produced RO/NS from mitochondrial metabolic citric-acid-cycle coupled with electron-transport-chain or exogenous stimuli trigger cellular signaling events leading to homeostatic response or pathological damage. Recent evidence suggests that RO/NS also modulate epigenetic machinery driving gene expression. RO/NS affect DNA methylation/demethylation, histone acetylation/deacetylation or histone methylation/demethylation. Many health beneficial phytochemicals possess redox capability that counteract RO/NS either by directly scavenging the radicals or via inductive mechanism of cellular defense antioxidant/reductive enzymes. Amazingly, these phytochemicals also possess epigenetic modifying ability. This review summarizes the latest advances on the interactions between redox signaling, mitochondrial metabolism, epigenetics and redox active phytochemicals and the future challenges of integrating these events in human health.


Assuntos
Epigênese Genética , Transdução de Sinais , Humanos , Oxirredução , Estresse Oxidativo , Compostos Fitoquímicos/farmacologia
18.
Carcinogenesis ; 43(2): 140-149, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34888630

RESUMO

Early detection of biomarkers in lung cancer is one of the best preventive strategies. Although many attempts have been made to understand the early events of lung carcinogenesis including cigarette smoking (CS) induced lung carcinogenesis, the integrative metabolomics and next-generation sequencing approaches are lacking. In this study, we treated the female A/J mice with CS carcinogen 4-[methyl(nitroso)amino]-1-(3-pyridinyl)-1-butanone (NNK) and naturally occurring organosulphur compound, diallyl sulphide (DAS) for 2 and 4 weeks after NNK injection and examined the metabolomic and DNA CpG methylomic and RNA transcriptomic profiles in the lung tissues. NNK drives metabolic changes including mitochondrial tricarboxylic acid (TCA) metabolites and pathways including Nicotine and its derivatives like nicotinamide and nicotinic acid. RNA-seq analysis and Reactome pathway analysis demonstrated metabolism pathways including Phase I and II drug metabolizing enzymes, mitochondrial oxidation and signaling kinase activation pathways modulated in a sequential manner. DNA CpG methyl-seq analyses showed differential global methylation patterns of lung tissues from week 2 versus week 4 in A/J mice including Adenylate Cyclase 6 (ADCY6), Ras-related C3 botulinum toxin substrate 3 (Rac3). Oral DAS treatment partially reversed some of the mitochondrial metabolic pathways, global methylation and transcriptomic changes during this early lung carcinogenesis stage. In summary, our result provides insights into CS carcinogen NNK's effects on driving alterations of metabolomics, epigenomics and transcriptomics and the chemopreventive effect of DAS in early stages of sequential lung carcinogenesis in A/J mouse model.


Assuntos
Neoplasias Pulmonares , Nitrosaminas , Animais , Feminino , Camundongos , Compostos Alílicos , Butanonas/metabolismo , Carcinogênese , Carcinógenos/metabolismo , Carcinógenos/toxicidade , DNA/metabolismo , Epigênese Genética , Epigenômica , Pulmão/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/prevenção & controle , Camundongos Endogâmicos , Nitrosaminas/metabolismo , Sulfetos , Nicotiana/efeitos adversos
19.
Cancer Res Commun ; 2(9): 937-950, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36922936

RESUMO

CLDN18.2 (Claudin18.2)-targeting therapeutic antibodies have shown promising clinical efficacy in approximately 30% of gastric cancers expressing high levels of CLDN18.2 and less pronounced activity in low expressing malignancies. Here, we report that ZL-1211 is a mAb targeting CLDN18.2 engineered to promote enhanced antibody-dependent cellular cytotoxicity (ADCC) with the goal of achieving more potent activity in a wider spectrum of high- and low-CLDN18.2 expressing tumors. ZL-1211 demonstrated more robust in vitro ADCC activity than clinical benchmark not only in CLDN18.2-high but also CLDN18.2-low expressing gastric tumor cell lines. Greater antitumor efficacy was also observed in mouse xenograft models. Natural killer (NK) cell played critical roles in ZL-1211 efficacy and NK-cell depletion abrogated ZL-1211-mediated ADCC activity in vitro. ZL-1211 efficacy in vivo was also dependent on the presence of an NK compartment. Strikingly, NK cells strongly induced an inflammatory response in response to ZL-1211 treatment, including increased IFNγ, TNFα, and IL6 production, and were recruited into tumor microenvironment in patient-derived gastric tumors expressing CLDN18.2 upon ZL-1211 treatment to lyse the tumor cells. Taken together, our data suggest that ZL-1211 more effectively targets CLDN18.2-high gastric cancers as well as -low expressing malignancies that may not be eligible for treatment with the leading clinical benchmark by inducing enhanced ADCC response and activating NK cells with robust inflammation to enhance antitumor efficacy. Clinical activity of ZL-1211 is currently under evaluation in a phase I clinical trial (NCT05065710). Significance: ZL-1211, anti-CLDN18.2 therapeutic antibody can target CLDN18.2-high as well as -low gastric cancers that may not be eligible for treatment with clinical benchmark. ZL-1211 treatment induces NK-cell activation with robust inflammation to further activate antitumor immunity in tumor microenvironment.


Assuntos
Neoplasias Gástricas , Camundongos , Animais , Humanos , Neoplasias Gástricas/tratamento farmacológico , Citotoxicidade Celular Dependente de Anticorpos , Células Matadoras Naturais , Linhagem Celular Tumoral , Inflamação/tratamento farmacológico , Microambiente Tumoral
20.
Cancer Res Commun ; 2(11): 1404-1417, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36970051

RESUMO

Tumor-associated macrophages (TAM) are the most abundant immune cells in the tumor microenvironment. They consist of various subsets but primarily resemble the M2 macrophage phenotype. TAMs are known to promote tumor progression and are associated with poor clinical outcomes. CD47 on tumor cells and SIRPα on TAMs facilitate a "don't-eat-me" signal which prevents cancer cells from immune clearance. Therefore, blockade of the CD47-SIRPα interaction represents a promising strategy for tumor immunotherapy. Here, we present the results on ZL-1201, a differentiated and potent anti-CD47 antibody with improved hematologic safety profile compared with 5F9 benchmark. ZL-1201 enhanced phagocytosis in combination with standards of care (SoC) therapeutic antibodies in in vitro coculture systems using a panel of tumor models and differentiated macrophages, and these combinational effects are Fc dependent while potently enhancing M2 phagocytosis. In vivo xenograft studies showed that enhanced antitumor activities were seen in a variety of tumor models treated with ZL-1201 in combination with other therapeutic mAbs, and maximal antitumor activities were achieved in the presence of chemotherapy in addition to the combination of ZL-1201 with other mAbs. Moreover, tumor-infiltrating immune cells and cytokine analysis showed that ZL-1201 and chemotherapies remodel the tumor microenvironment, which increases antitumor immunity, leading to augmented antitumor efficacy when combined with mAbs. Significance: ZL-1201 is a novel anti-CD47 antibody that has improved hematologic safety profiles and combines with SoC, including mAbs and chemotherapies, to potently facilitate phagocytosis and antitumor efficacy.


Assuntos
Antineoplásicos , Macrófagos Associados a Tumor , Humanos , Linhagem Celular Tumoral , Macrófagos , Fagocitose , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Anticorpos Bloqueadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA