Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169149, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38061641

RESUMO

Organophosphate esters (OPEs), extensively used as flame retardants, are widely detected in various regions and environments. The potential toxicity of OPEs has caused great concern in recent years. Based on the global distillation model, the Tien Shan glaciers, such as Urumqi Glacier No. 1, could be as a potential "sink" for OPEs. However, little is known about the concentration, distribution, potential sources, and ecological risks of OPEs in Tien Shan glaciers. In this study, fresh snow samples were collected at various altitudes on the Urumqi Glacier No. 1, eastern Tien Shan, China. The total concentrations of ten OPEs (Σ10OPEs) ranged from 116 to 152 ng/L. The most abundant OPE was tris-(2-chloroisopropyl) phosphate (TCIPP), contributing to 74 % of the total OPEs. Σ10OPEs, tri-n-butyl phosphate (TnBP), and TCIPP concentrations showed positive correlations with altitude, indicating the effect of cold condensation on OPEs deposition. Based on air mass back-trajectory analysis and principal component analysis, we found that emissions from both traffic and household products in indoor environment were the important sources, and OPEs on the Urumqi Glacier No. 1 might mainly originate from Europe. Our assessment also showed triphenyl phosphate (TPhP) posed a low ecological risk in snow. This is the first systematic study of OPEs on the Tien Shan glaciers.

2.
Sci Total Environ ; 713: 136631, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019019

RESUMO

Stable isotopes of oxygen (δ18O) and hydrogen (δD) in precipitation can be used as dual conservative tracers in the hydrologic cycle and help to understand hydrological and atmospheric processes. Although long-term monthly precipitation global isotope datasets are available in some locations, currently there are limited daily precipitation isotope data, particularly in the Midwest region of the USA. In this study we report a daily precipitation δ18O and δD dataset from March 2014-December 2017 in Dayton, Ohio, the USA. The daily δ18O and δD vary from -28.0 to 0.4‰, and -214.0 to 9.0‰ respectively. The data exhibit strong seasonality with lower δ18O and δD values in the winter and higher values in the summer. The precipitation isotopic values are mainly controlled by temperature, and show no correlation with precipitation amount and relative humidity. However, δ18O-temperature relationship varies among different seasons. The correlation is the strongest in winter (R2 = 0.56), weaker in spring (R2 = 0.28) and fall (R2 = 0.24), and almost non-existent in summer (R2 = 0.1). The slope values also vary with highest value in winter (0.68‰/OC) and much smaller in other seasons. The HYSPLIT back trajectory analyses show that Pacific, Gulf of Mexico, Arctic and Continental moistures are the main sources for southwestern Ohio with different seasonal contributions. The isotopic compositions of precipitation from different sources show small intra-season variations but large seasonal variability. Our daily-resolved dataset provides new insights into the main controls on the isotopic composition of precipitation and its seasonal variations, which could help to understand atmospheric processes and enable their proper use in interpretation of paleoclimate proxies, particularly those with seasonal bias.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA