Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Eur J Pharm Sci ; 199: 106807, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797440

RESUMO

Ustekinumab (UST), a fully human immunoglobulin G1 κ monoclonal antibody, exhibiting high affinity for the p40 subunit shared by IL-12 and IL-23, which play key roles in the pathogenesis of inflammatory bowel disease (IBD). By scaling the physiologically-based pharmacokinetic modeling (PBPK) model of UST in adult patients with IBD, we aim to predict effective dosages for UST in pediatric patients, thereby offering a more practical dosing regimen for real-world applications. In this work, a PBPK model for UST in adult patients with IBD has been developed using PK-Sim and Mobi. Advanced ontogeny model has been incorporated to extrapolate the model to pediatric patients. The simulation results showed that the fold errors of the predicted and observed values of the area under the curve (AUC) and peak plasma concentration (Cmax) were between 0.79 and 1.73. For children aged 6-18, it is recommended to administer the drug per kilogram of body weight, at the model-recommended dose, to achieve a median AUC similar to that of the adult reference population post-administration. This comprehensive model construction enables us to comprehensively and extensively explore the pharmacokinetic characteristics of UST in pediatric patients of different age groups, providing robust support for clinical applications and personalized drug therapy.


Assuntos
Doenças Inflamatórias Intestinais , Modelos Biológicos , Ustekinumab , Humanos , Ustekinumab/farmacocinética , Ustekinumab/administração & dosagem , Criança , Adolescente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Masculino , Feminino , Área Sob a Curva , Adulto , Simulação por Computador
2.
Orphanet J Rare Dis ; 19(1): 99, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438867

RESUMO

BACKGROUND: Most genetic skeletal disorders (GSD) were complex, disabling and life-threatening without effective diagnostic and treatment methods. However, its impacts on health system have not been well studied. The study aimed to systematically evaluate the health-care utilization and economic burden in GSD patients. METHODS: The patients were derived from 2018 Nationwide Inpatient Sample and Nationwide Readmissions Database. GSD patients were extracted based on International Classification of Diseases-10th revision codes. RESULTS: A total of 25,945 (0.12%) records regarding GSD were extracted from all 21,400,282 records in NIS database. GSD patients were likely to have significantly longer length of stay (6.50 ± 0.08 vs. 4.63 ± 0.002, P < 0.001), higher total charges ($85,180.97 ± 1,239.47 vs. $49,884.26 ± 20.99, P < 0.001), suffering more procedure, diagnosis and transferring records in comparison to patients with common conditions. GSD patients had a significantly higher 30-day all-cause readmission rate based on Nationwide Readmissions Database. CONCLUSIONS: The heavy health-care utilization and economic burden emphasized the urgency for policy leaders, scientific and pharmaceutical researchers, health care providers and employers to identify innovative ways and take effective measurements immediately, and eventually to help improve the care, management, and treatment of these devastating diseases.


Assuntos
Estresse Financeiro , Aceitação pelo Paciente de Cuidados de Saúde , Humanos , Pacientes Internados , Bases de Dados Factuais , Pessoal de Saúde
3.
World J Diabetes ; 15(2): 275-286, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38464380

RESUMO

BACKGROUND: Adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1) plays a crucial role in regulating insulin signaling and glucose metabolism. Mutations in the APPL1 gene have been associated with the development of maturity-onset diabetes of the young type 14 (MODY14). Currently, only two mutations [c.1655T>A (p.Leu552*) and c.281G>A p.(Asp94Asn)] have been identified in association with this disease. Given the limited understanding of MODY14, it is imperative to identify additional cases and carry out comprehensive research on MODY14 and APPL1 mutations. AIM: To assess the pathogenicity of APPL1 gene mutations in diabetic patients and to characterize the functional role of the APPL1 domain. METHODS: Patients exhibiting clinical signs and a medical history suggestive of MODY were screened for the study. Whole exome sequencing was performed on the patients as well as their family members. The pathogenicity of the identified APPL1 variants was predicted on the basis of bioinformatics analysis. In addition, the pathogenicity of the novel APPL1 variant was preliminarily evaluated through in vitro functional experiments. Finally, the impact of these variants on APPL1 protein expression and the insulin pathway were assessed, and the potential mechanism underlying the interaction between the APPL1 protein and the insulin receptor was further explored. RESULTS: A total of five novel mutations were identified, including four missense mutations (Asp632Tyr, Arg633His, Arg532Gln, and Ile642Met) and one intronic mutation (1153-16A>T). Pathogenicity prediction analysis revealed that the Arg532Gln was pathogenic across all predictions. The Asp632Tyr and Arg633His variants also had pathogenicity based on MutationTaster. In addition, multiple alignment of amino acid sequences showed that the Arg532Gln, Asp632Tyr, and Arg633His variants were conserved across different species. Moreover, in in vitro functional experiments, both the c.1894G>T (at Asp632Tyr) and c.1595G>A (at Arg532Gln) mutations were found to downregulate the expression of APPL1 on both protein and mRNA levels, indicating their pathogenic nature. Therefore, based on the patient's clinical and family history, combined with the results from bioinformatics analysis and functional experiment, the c.1894G>T (at Asp632Tyr) and c.1595G>A (at Arg532Gln) mutations were classified as pathogenic mutations. Importantly, all these mutations were located within the phosphotyrosine-binding domain of APPL1, which plays a critical role in the insulin sensitization effect. CONCLUSION: This study provided new insights into the pathogenicity of APPL1 gene mutations in diabetes and revealed a potential target for the diagnosis and treatment of the disease.

4.
Eur J Pharm Sci ; 194: 106707, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244810

RESUMO

Carbamazepine is an antiepileptic drug commonly used in pregnant women, during which the physiological changes may affect its efficacy. The aim of this study was to establish a physiologically based pharmacokinetic (PBPK) model of carbamazepine and its active metabolite carbamazepine-10,11-epoxide, and simulate maternal and fetal pharmacokinetic changes of carbamazepine and carbamazepine-10,11-epoxide in different trimesters and propose dose adjustment. We established pregnancy PBPK models for carbamazepine and carbamazepine-10,11-epoxide in PK-Sim® and Mobi® and validated the models with observed data from clinical reports. The placental transfer parameters obtained using different methods were also imported into the model and compared with the observed data to establish and validate fetal pharmacokinetic curves. The simulated results showed that mean steady-state trough plasma concentration of carbamazepine decreased by 27, 43.1, and 52 % during the first, second, and third trimesters, respectively. Therefore, to achieve an optimum therapeutic concentration, administering at least 1.4, 1.8, and 2.1 times the baseline dose of carbamazepine in the first, second, and third trimesters, respectively can be used as a dose reference. In conclusion, this study established and validated a pregnancy PBPK model of carbamazepine and carbamazepine-10,11-epoxide to assess exposure in pregnant women and fetuses, which provided a reference for the dosage adjustment of carbamazepine during pregnancy.


Assuntos
Modelos Biológicos , Placenta , Gravidez , Feminino , Humanos , Placenta/metabolismo , Feto/metabolismo , Carbamazepina
5.
Clin Mol Hepatol ; 30(1): 80-97, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061333

RESUMO

BACKGROUND/AIMS: To evaluate the causal correlation between complement components and non-viral liver diseases and their potential use as druggable targets. METHODS: We conducted Mendelian randomization (MR) to assess the causal role of circulating complements in the risk of non-viral liver diseases. A complement-centric protein interaction network was constructed to explore biological functions and identify potential therapeutic options. RESULTS: In the MR analysis, genetically predicted levels of complement C1q C chain (C1QC) were positively associated with the risk of autoimmune hepatitis (odds ratio 1.125, 95% confidence interval 1.018-1.244), while complement factor H-related protein 5 (CFHR5) was positively associated with the risk of primary sclerosing cholangitis (PSC;1.193, 1.048- 1.357). On the other hand, CFHR1 (0.621, 0.497-0.776) and CFHR2 (0.824, 0.703-0.965) were inversely associated with the risk of alcohol-related cirrhosis. There were also significant inverse associations between C8 gamma chain (C8G) and PSC (0.832, 0.707-0.979), as well as the risk of metabolic dysfunction-associated steatotic liver disease (1.167, 1.036-1.314). Additionally, C1S (0.111, 0.018-0.672), C7 (1.631, 1.190-2.236), and CFHR2 (1.279, 1.059-1.546) were significantly associated with the risk of hepatocellular carcinoma. Proteins from the complement regulatory networks and various liver diseaserelated proteins share common biological processes. Furthermore, potential therapeutic drugs for various liver diseases were identified through drug repurposing based on the complement regulatory network. CONCLUSION: Our study suggests that certain complement components, including C1S, C1QC, CFHR1, CFHR2, CFHR5, C7, and C8G, might play a role in non-viral liver diseases and could be potential targets for drug development.


Assuntos
Carcinoma Hepatocelular , Hepatite Autoimune , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Hepatite Autoimune/complicações , Hepatite Autoimune/tratamento farmacológico , Hepatite Autoimune/genética , Neoplasias Hepáticas/genética
6.
Front Physiol ; 14: 1290611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089474

RESUMO

Background: There is an inconsistent association between overweight/obesity and chronic obstructive pulmonary disease (COPD). Considering that different metabolic characteristics exist among individuals in the same body mass index (BMI) category, the classification of overweight/obesity based on metabolic status may facilitate the risk assessment of COPD. Our study aimed to explore the relationship between metabolic overweight/obesity phenotypes and unplanned readmission in patients with COPD. Methods: We conducted a retrospective cohort study using the Nationwide Readmissions Database (NRD). According to metabolic overweight/obesity phenotypes, patients were classified into four groups: metabolically healthy non-overweight/obesity (MHNO), metabolically unhealthy non-overweight/obesity (MUNO), metabolically healthy with overweight/obesity (MHO), and metabolically unhealthy with overweight/obesity (MUO). The primary outcome was unplanned readmission to hospital within 30 days of discharge from index hospitalization. Secondary outcomes included in-hospital mortality, length of stay (LOS) and total charges of readmission within 30 days. Results: Among 1,445,890 patients admitted with COPD, 167,156 individuals were unplanned readmitted within 30 days. Patients with the phenotype MUNO [hazard ratio (HR), 1.049; 95%CI, 1.038-1.061; p < 0.001] and MUO (HR, 1.061; 95%CI, 1.045-1.077; p < 0.001) had a higher readmission risk compared with patients with MHNO. But in elders (≥65yr), MHO also had a higher readmission risk (HR, 1.032; 95%CI, 1.002-1.063; p = 0.039). Besides, the readmission risk of COPD patients with hyperglycemia or hypertension regardless of overweight/obesity increased (p < 0.001). Conclusion: In patients with COPD, overweight/obesity alone had little effect on unplanned readmission, whereas metabolic abnormalities regardless of overweight/obesity were associated with an increased risk of unplanned readmission. Among the metabolic abnormalities, particular attention should be paid to hyperglycemia and hypertension. But in elders (≥65yr) overweight/obesity and metabolic abnormalities independently exacerbated the adverse outcomes.

7.
Clin Pharmacol Ther ; 114(6): 1254-1263, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37620249

RESUMO

Anti-tumor necrosis factor (anti-TNF) agents are widely applied for patients with inflammatory bowel disease (IBD); however, the timing of the last dosing for IBD pregnancy and time to elimination in anti-TNF agent-exposed infants is controversial. This study aimed to determine the optimal timing for the last dosing of anti-TNF agents (infliximab, adalimumab, and golimumab) in pregnant women with IBD, as well as to investigate the recommended vaccine schedules for infants exposed to these drugs. A physiologically-based pharmacokinetic (PBPK) model of anti-TNF agents was built for adults and extrapolated to pregnant patients, fetuses, and infants. The PBPK models successfully predicted and verified the pharmacokinetics (PKs) of infliximab, adalimumab, and golimumab in pregnancy, fetuses, and infants. The predicted PK data were within two-fold of the observed data. The simulated results were used as timing advice. According to the dose of administration, the suggested timing of the last dosing for infliximab, adalimumab, and golimumab is successfully provided based on PBPK predictions. PBPK models indicated that, for infants, the advocated timing of vaccination is 12, 8, and 5 months after birth for infliximab, adalimumab, and golimumab, respectively. Our study illustrated that PBPK models can provide a valuable tool to predict the PKs of large macromolecules in pregnant women, fetuses, and infants, ultimately informing drug-treatment decisions for pregnancy and vaccination regimens for infants.


Assuntos
Doenças Inflamatórias Intestinais , Vacinas , Adulto , Humanos , Lactente , Feminino , Gravidez , Infliximab/uso terapêutico , Adalimumab/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa , Doenças Inflamatórias Intestinais/tratamento farmacológico , Vacinas/uso terapêutico , Necrose/tratamento farmacológico
8.
Arch Toxicol ; 97(10): 2659-2673, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572130

RESUMO

Nephrotoxicity is the most common side effect that severely limits the clinical application of tacrolimus (TAC), an immunosuppressive agent used in kidney transplant patients. This study aimed to explore the tolerated dose of nephrotoxicity of TAC in individuals with different CYP3A5 genotypes and liver conditions. We established a human whole-body physiological pharmacokinetic (WB-PBPK) model and validated it using data from previous clinical studies. Following the injection of 1 mg/kg TAC into the tail veins of male rats, we developed a rat PBPK model utilizing the drug concentration-time curve obtained by LC-MS/MS. Next, we converted the established rat PBPK model into the human kidney PBPK model. To establish renal concentrations, the BMCL5 of the in vitro CCK-8 toxicity response curve (drug concentration range: 2-80 mol/L) was extrapolated. To further investigate the acceptable levels of nephrotoxicity for several distinct CYP3A5 genotypes and varied hepatic function populations, oral dosing regimens were extrapolated utilizing in vitro-in vivo extrapolation (IVIVE). The PBPK model indicated the tolerated doses of nephrotoxicity were 0.14-0.185 mg/kg (CYP3A5 expressors) and 0.13-0.155 mg/kg (CYP3A5 non-expressors) in normal healthy subjects and 0.07-0.09 mg/kg (CYP3A5 expressors) and 0.06-0.08 mg/kg (CYP3A5 non-expressors) in patients with mild hepatic insufficiency. Further, patients with moderate hepatic insufficiency tolerated doses of 0.045-0.06 mg/kg (CYP3A5 expressors) and 0.04-0.05 mg/kg (CYP3A5 non-expressors), while in patients with moderate hepatic insufficiency, doses of 0.028-0.04 mg/kg (CYP3A5 expressors) and 0.022-0.03 mg/kg (CYP3A5 non-expressors) were tolerated. Overall, our study highlights the combined usage of the PBPK model and the IVIVE approach as a valuable tool for predicting toxicity tolerated doses of a drug in a specific group.


Assuntos
Citocromo P-450 CYP3A , Tacrolimo , Humanos , Masculino , Animais , Ratos , Tacrolimo/toxicidade , Citocromo P-450 CYP3A/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Imunossupressores/toxicidade , Genótipo
9.
J Ethnopharmacol ; 312: 116446, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37019162

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shuxie Compound (SX) combines the composition and efficacy of Suanzaoren decoction and Huanglian Wendan decoction. It can soothe the liver, regulate the qi, nourish the blood and calm the mind. It is used in the clinical treatment of sleep disorder with liver stagnation. Modern studies have proved that circadian rhythm disorder (CRD) can cause sleep deprivation and liver damage, which can be effectively ameliorated by traditional Chinese medicine to soothe the liver stagnation. However, the mechanism of SX is unclear. AIM OF THE STUDY: This study was designed to demonstrate the impact of SX on CRD in vivo, and confirm the molecular mechanisms of SX in vitro. MATERIALS AND METHODS: The quality of SX and drug-containing serum was controlled by UPLC-Q-TOF/MS, which were used in vivo and in vitro experiments, respectively. In vivo, a light deprivation mouse model was used. In vitro, a stable knockdown Bmal1 cell line was used to explore SX mechanism. RESULTS: Low-dose SX (SXL) could restore (1) circadian activity pattern, (2) 24-h basal metabolic pattern, (3) liver injury, and (4) Endoplasmic reticulum (ER) stress in CRD mice. CRD decreased the liver Bmal1 protein at ZT15, which was reversed by SXL treatment. Besides, SXL decreased the mRNA expression of Grp78/ATF4/Chop and the protein expression of ATF4/Chop at ZT11. In vitro experiments, SX reduced the protein expression of thapsigargin (tg)-induced p-eIF2α/ATF4 pathway and increase the viability of AML12 cells by increasing the expression of Bmal1 protein. CONCLUSIONS: SXL relieved CRD-induced ER stress and improve cell viability by up-regulating the expression of Bmal1 protein in the liver and then inhibiting the protein expression of p-eIF2α/ATF4.


Assuntos
Fatores de Transcrição ARNTL , Fator de Iniciação 2 em Eucariotos , Camundongos , Animais , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/farmacologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/farmacologia , Fígado , Ritmo Circadiano , Estresse do Retículo Endoplasmático , Apoptose , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
10.
J Clin Pharmacol ; 63(7): 848-858, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36869593

RESUMO

The aim of the present study is to develop physiologically based pharmacokinetic (PBPK) models for saxagliptin and its active metabolite, 5-hydroxy saxagliptin, and to predict the effect of coadministration of rifampicin, a strong inducer of cytochrome P450 3A4 enzymes, on the pharmacokinetics of saxagliptin and 5-hydroxy saxagliptin in patients with renal impairment. The PBPK models of saxagliptin and 5-hydroxy saxagliptin were developed and validated in GastroPlus for healthy adults with or without rifampicin and adults with varying renal functions. Then, the effect of renal impairment combined with drug-drug interaction on saxagliptin and 5-hydroxy saxagliptin pharmacokinetics was investigated. The PBPK models successfully predicted the pharmacokinetics. For saxagliptin, the prediction suggests that rifampin greatly weakened the effect of renal impairment on reducing clearance, and the inductive effect of rifampin on parent drug metabolism seems to be increased with an increase in the degree of renal impairment severity. For patients with the same degree of renal impairment, rifampicin would have a slightly synergistic effect on the increase of 5-hydroxy saxagliptin exposure compared with dosed alone. There is an unsignificant decline for the saxagliptin total active moiety exposure values in patients with the same degree of renal impairment. It seems that patients with renal impairment are unlikely to require additional dose adjustments when coadministered with rifampicin, compared with saxagliptin alone. Our study provides a reasonable approach to explore unknown DDI potential in renal impairment.


Assuntos
Adamantano , Rifampina , Adulto , Humanos , Rifampina/farmacocinética , Dipeptídeos/farmacocinética , Interações Medicamentosas , Citocromo P-450 CYP3A/metabolismo , Modelos Biológicos
11.
Clin Pharmacol Ther ; 113(3): 724-734, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36495063

RESUMO

Omalizumab is widely used in clinical practice; however, knowledge gaps in the dosage of omalizumab for children aged 2-6 years with moderate-to-severe persistent allergic asthma have been identified. The aim of this study was to explore dosing regimens for moderately-to-severely allergic pediatric patients aged 2-6 years. The physiologically-based pharmacokinetic (PBPK) model of omalizumab was developed and verified in adult patients, extrapolated to pediatric patients, and simulated for omalizumab by adding two observation chambers (free IgE and total IgE). The simulation results showed that the fold errors of the predicted and observed values of the area under the curve (AUC) and peak plasma concentration (Cmax ) were between 0.5 and 2.0, and the average folding error and the absolute average folding error values for all concentration-time data points were 1.09 and 1.48, respectively. The PBPK model combined with pharmacokinetic/pharmacodynamic analysis of omalizumab demonstrated that both the model-derived dose and the original dose could control the average free IgE of 2-6-year-old children with moderate-to-severe allergic asthma below 25 ng/mL, and some of the model-derived doses were lower. This conclusion provides a basis for the selection of dosage in clinical practice reference.


Assuntos
Antiasmáticos , Asma , Adulto , Criança , Humanos , Omalizumab/farmacocinética , Antiasmáticos/farmacocinética , Imunoglobulina E/uso terapêutico , Asma/tratamento farmacológico , Simulação por Computador
12.
Eur J Pharm Sci ; 181: 106349, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496167

RESUMO

Levetiracetam is currently being used to treat epilepsy in pregnant women. The plasma concentration of levetiracetam drops sharply during pregnancy, and the inability of pregnant women to maintain therapeutic concentrations can lead to seizures. This study aimed to predict the changes in fetal and maternal plasma exposure to levetiracetam during pregnancy and provide advice on dose adjustment. The physiology-based pharmacokinetics (PBPK) model was developed using PK-Sim and Mobi software, and validated following comparison of the observed plasma concentration and pharmacokinetic parameters. The levetiracetam PBPK model for mother and the fetus at various stages of pregnancy was successfully established and verified. Predictions indicated that the area under the steady-state concentration-time curve for levetiracetam decreased to 83, 62, and 67% of baseline values in the first, second, and third trimesters, respectively. Based on PBPK predictions, the recommended dose of levetiracetam is 1.2, 1.6, and 1.5 times the baseline dose in the first, second, and third trimesters, respectively, not exceeding 4000 mg/day in the third trimester due to fetal safety. The levetiracetam PBPK model for pregnancy was successfully developed and validated, and could provide alternative levetiracetam dosing regimens across the stages of pregnancy.


Assuntos
Feto , Software , Gravidez , Humanos , Feminino , Levetiracetam , Convulsões , Modelos Biológicos
13.
Pharmaceutics ; 14(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36365185

RESUMO

Pregnancy is associated with physiological changes that may affect drug pharmacokinetics (PKs). The aim of this study was to establish a maternal-fetal physiologically based pharmacokinetic (PBPK) model of oxcarbazepine (OXC) and its active metabolite, 10,11-dihydro-10-hydroxy-carbazepine (MHD), to (1) assess differences in pregnancy, (2) predict changes in PK target parameters of these molecules following the current dosing regimen, (3) assess predicted concentrations of these molecules in the umbilical vein at delivery, and (4) compare different methods for estimating drug placental penetration. Predictions using the pregnancy PBPK model of OXC resulted in maternal concentrations within a 2-fold error, and extrapolation of the model to early-stage pregnancies indicated that changes in median PK parameters remained above target thresholds, requiring increased frequency of monitoring. The dosing simulation results suggested dose adjustment in the last two trimesters. We generally recommend that women administer ≥ 1.5× their baseline dose of OXC during their second and third trimesters. Test methods for predicting placental transfer showed varying performance, with the in vitro method showing the highest predictive accuracy. Exposure to MHD in maternal and fetal venous blood was similar. Overall, the above-mentioned models can enhance understanding of the maternal-fetal PK behavior of drugs, ultimately informing drug-treatment decisions for pregnant women and their fetuses.

14.
Front Pharmacol ; 13: 838599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052120

RESUMO

Background and Objective: Daptomycin is used to treat Gram-positive infections in adults and children and its dosing varies among different age groups. We focused on the pharmacokinetics of daptomycin in children with renal impairment, which has not been evaluated. Methods: A physiologically based pharmacokinetic (PBPK) model of daptomycin was established and validated to simulate its disposition in healthy populations and adults with renal impairment, along with a daptomycin exposure simulated in pediatric patients with renal impairment. Results: The simulated PBPK modeling results for various regimens of intravenously administered daptomycin were consistent with observed data according to the fold error below the threshold of 2. The Cmax and AUC of daptomycin did not differ significantly between children with mild-to-moderate renal impairment and healthy children. The AUC increased by an average of 1.55-fold and 1.85-fold in severe renal impairment and end-stage renal disease, respectively. The changes were more significant in younger children and could reach a more than 2-fold change. This scenario necessitates further daptomycin dose adjustments. Conclusion: Dose adjustments take into account the efficacy and safety of the drug; however, the steady-state Cmin of daptomycin may be above 24.3 mg/L in a few instances. We recommend monitoring creatine phosphokinase more than once a week when using daptomycin in children with renal impairment.

15.
Front Pharmacol ; 13: 848355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462928

RESUMO

Introduction: Chronic stress has been shown to cause liver damage in addition to psychological depression. Besides, drug-induced liver injury is frequently caused by antidepressants. Shuxie-1 decoction (SX-1) is a formula of traditional Chinese medicine commonly used in nourishing liver blood, and relieving depression. However, the underlying molecular mechanism remains unclear. Therefore, this study was designed to explore the effects and mechanisms of SX-1 in treating chronic stress-induced depression as well as liver injury. Methods: Chronic unpredictable mild stress (CUMS) was applied to male Wistar rats for 4 weeks, with or without administration of SX-1 at low-dose and high-dose for 6 weeks, using Fluoxetine (Flu) as a positive control. Body weight was monitored once every 2 weeks. In the sixth week, the sugar preference test and open field test were carried out to evaluate the depression status. After that, the serum and liver tissues were collected. The quality control of SX-1 decoctions and drug-containing serum was controlled by UHPLC-QE-MS. The cell viability was measured by Cell Counting Kit-8 (CCK8). Enzyme-linked immunosorbent assay (Elisa), Western Blot and immunohistochemistrical staining was obtained to detect the protein levels in the plasma and the hepatic tissues, respectively. Results: CUMS led to decreased 1) body weight, 2) the preference for sugar water, 3) the desire to explore in open field, and increased serum levels of corticosterone. All these factors were completely reversed by SX-1 treatment. Hematoxylin-eosin staining (HE) showed that SX-1 improved the hepatocyte vacuolization in CUMS treated rats, decreased the serum levels of alanine aminotransferase (ALT) and the deposition of type I collagen (Col I) in hepatocytes as well. CUMS increased the levels of hepatic Interleukin-6 (IL-6), and provoked the activation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), which was abrogated by SX-1 treatment. Cobalt chloride (CoCl2) increased the protein expression of IL-6 and p-STAT3 in AML12 cells. Besides, nuclear pyknosis was observed under electron microscope, which were recovered after rat SX serum. Conclusion: SX-1 effectively ameliorated CUMS-induced depression-like behaviors as well as hepatic injuries, probably by the blockade of hepatic IL-6/JAK2/STAT3 signaling.

16.
Clin Oral Investig ; 26(3): 2465-2478, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34622310

RESUMO

OBJECTIVES: The objective of this study was to examine the association between the oral microbiome and pregnancy outcomes, specifically healthy or preterm low birth weight (PLBW) in individuals with and without periodontal disease (PD). MATERIAL AND METHODS: In this prospective clinical trial, we recruited 186 pregnant women, 17 of whom exhibited PD and delivered PLBW infants (PD-PLBW group). Of the remaining women, 155 presented PD and delivered healthy infants; 18 of these subjects with similar periodontal condition and age matched to the PD-PLBW group, and they became the PD-HD group. From the total group, 11 women exhibited healthy gingiva and had a healthy delivery (HD) and healthy infants (H-HD group), and 3 exhibited healthy gingiva and delivered PLBW infants (H-PLBW group). Periodontal parameters were recorded, and subgingival plaque and serum were collected during 26-28 gestational weeks. For the plaque samples, microbial abundance and diversity were accessed by 16S rRNA sequencing. RESULTS: Women with PD showed an enrichment in the genus Porphyromonas, Treponema, and Filifactor, whereas women with healthy gingiva showed an enrichment in Streptococcus, Actinomyces, and Corynebacterium, independently of the birth status. Although no significant difference was found in the beta diversity between the 4 groups, women that had PLBW infants presented a significantly lower abundance of the genus Neisseria, independently of PD status. CONCLUSION: Lower levels of Neisseria align with preterm low birth weight in pregnant women, whereas a higher abundance of Treponema, Porphyromonas, Fretibacterium, and Filifactor and a lower abundance of Streptococcus may contribute to periodontal disease during pregnancy. CLINICAL RELEVANCE: The oral commensal Neisseria have potential in the prediction of PLBW.


Assuntos
Microbiota , Nascimento Prematuro , Feminino , Humanos , Lactente , Recém-Nascido de Baixo Peso , Recém-Nascido , Neisseria , Gravidez , Resultado da Gravidez , RNA Ribossômico 16S
17.
J Pharm Sci ; 111(2): 542-551, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34706283

RESUMO

Pregabalin (PGB) is widely used clinically; however, its pharmacokinetics (PK) has not been studied in pediatric patients with renal impairment (RI). To design optimized PGB regimens for pediatric patients with varying degrees of RI and predict exposure to PGB, physiologically based pharmacokinetic (PBPK) models of PGB were developed and verified, and its disposition was simulated in the healthy population and adults with RI. The simulated results from the PBPK models after single-dose and multi-dose administrations of PGB were consistent with the corresponding observed data based on the fold error values of less than 2. The area under curve ratios were 1.23 ± 0.06, 2.02 ± 0.10, 3.86 ± 0.21, and 9.92 ± 0.79 in pediatric patients with mild, moderate, severe, and end-stage RI, respectively. Based on the predictions for pediatric patients with moderate, severe, and end-stage RI, the maximum dose should not exceed 7, 3.5, and 1.4 mg/kg/day, respectively, among those weighing < 30 kg, and it should not exceed 5, 2.5, and 1 mg/kg/day, respectively, among those weighing > 30 kg. In conclusion, the developed PBPK model is a valuable tool for predicting PGB dosage for pediatric patients with RI.


Assuntos
Pregabalina , Adulto , Criança , Humanos
18.
J Clin Pharmacol ; 61(12): 1646-1656, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34329494

RESUMO

Ceftaroline fosamil is a fifth-generation cephalosporin approved as a treatment for adults and children with community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections. However, its pharmacokinetics have not been fully evaluated in children with renal impairment. This study aimed to propose proper ceftaroline dosages optimized for the renally impaired pediatric population using physiologically based pharmacokinetic (PBPK) modeling. A PBPK model of ceftaroline was established and verified to simulate its disposition in the healthy population and renally impaired adults and to predict the exposure in renally impaired pediatric patients. Consistency was confirmed between simulated and observed data after intravenous administration of various ceftaroline regimens; fold errors were within the 2-fold error range. Among 6-year-old children, healthy subjects had 1.5-fold, 2-fold, and 2.6-fold lower areas under the plasma concentration-time curve (AUCs) than the moderate, severe, and end-stage renally impaired patient groups, respectively; among 1-year-old children, healthy subjects had 1.5-fold, 2.1-fold, and 2.5-fold lower AUCs than the respective renally impaired patient groups; among 1-month-old children, healthy subjects had 1.5-fold, 1.8-fold, and 2.2-fold lower AUCs than the respective renally impaired patient groups. The proposed dosage should be adjusted to 8, 6, and 5 mg/kg every 8 hours for patients aged ≥2 years to <18 years (≤33 kg) with moderate, severe, and end-stage renal impairment, respectively; 5, 4, and 3 mg/kg every 8 hours for patients aged 2 months to <2 years with moderate, severe, and end-stage renal impairment, respectively; 4, 3.5, and 2.5 mg/kg every 8 hours for patients 0 to <2 months of age with moderate, severe, and end-stage renal impairment, respectively. Furthermore, pharmacodynamic investigations demonstrated that adequate antimicrobial effects were attained at the proposed doses in 3 age groups. Hence, our PBPK model can be an effective tool to support ceftaroline dosage proposals for renally impaired pediatric patients.


Assuntos
Antibacterianos/farmacocinética , Cefalosporinas/farmacocinética , Insuficiência Renal/metabolismo , Adolescente , Antibacterianos/farmacologia , Área Sob a Curva , Cefalosporinas/farmacologia , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Feminino , Barreira de Filtração Glomerular , Meia-Vida , Humanos , Masculino , Taxa de Depuração Metabólica , Testes de Sensibilidade Microbiana , Gravidade do Paciente , Ceftarolina
19.
J Pharm Sci ; 110(4): 1853-1862, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33556385

RESUMO

Physiologically based pharmacokinetic (PBPK) modeling has unique advantages in investigating the pharmacokinetics of drugs in special populations. Our aim is to design optimized dosing regimens for ceftazidime in renally-impaired pediatric patients using PBPK modeling. Models for healthy and renally-impaired adults were developed, verified, and adapted for children to predict ceftazidime exposure in pediatric patients with varying degrees of renal impairment, capturing age- and weight-related pharmacokinetic changes. We derived a dosage-adjusted regimen for renally-impaired children based on pharmacokinetic data and evaluated the pharmacodynamics of ceftazidime. The PBPK models adequately predicted ceftazidime exposures in populations after single- and multi-dose administrations, with fold error values within 1.1 between simulated and observed data. In moderate, severe, and end-stage renally-impaired pediatric patients, the areas under the plasma concentration-time curves (AUCs) were 1.87-fold, 3.56-fold, and 6.19-fold higher, respectively, than in healthy children when treated with the same dose of 50 mg/kg. Pharmacodynamic verification indicated that the recommended doses of 28, 15, and 8 mg/kg administered three times daily (every 8 h) to pediatric patients with moderate, severe, and end-stage renal disease, respectively, were sufficient to attain the target of maintaining the free plasma concentration at or above minimum inhibitory concentration (MIC) during 70% of the dosing interval (70% fT > MIC: nearly 100% target attainment for susceptible MIC of 4 mg/L and >70% for intermediate MIC of 8 mg/L). Our PBPK model can be an effective tool to support dosing recommendations in pediatric patients with different degrees of renal impairment.


Assuntos
Ceftazidima , Preparações Farmacêuticas , Adulto , Área Sob a Curva , Criança , Humanos , Modelos Biológicos
20.
Eur J Clin Pharmacol ; 77(7): 989-998, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33447912

RESUMO

PURPOSE: U.S. Food and Drug Administration (FDA) recommended telavancin dosing is based on total body weight (TBW) but lacks adjusted regimens for obese subjects with varying renal function. Our aim was to develop a physiologically based pharmacokinetic (PBPK) model of telavancin to design optimized dosing regimens for obese patients with hospital-acquired pneumonia (HAP) and varying renal function. METHODS: The PBPK model was verified using clinical pharmacokinetic (PK) data of telavancin in healthy populations with varying renal function and obese populations with normal renal function. Then, the PBPK model was applied to predict the PK in obese HAP patients with renal impairment (RI). RESULTS: The fold error values of PK parameters (AUC, Cmax, Tmax) were all within 1.5. The telavancin AUC0-inf was predicted to increase 1.07-fold in mild RI, 1.23-fold in moderate RI, 1.41-fold in severe RI, and 1.57-fold in end-stage renal disease (ESRD), compared with that in obese HAP with normal renal function. The PBPK model combined with Monte Carlo simulations (MCS) suggested that dose adjustment based on a 750-mg-fixed dose could achieve effectiveness with reduced risk of toxicity, compared with current TBW-based dosing recommendations. CONCLUSION: The PBPK simulation proposed that using TBW-based regimen in obesity with RI should be avoided. Dose recommendations in obesity from the PBPK model are 750 mg daily for normal renal function and mild RI, 610 mg daily for moderate RI, 530 mg daily for severe RI, and 480 mg daily for ESRD.


Assuntos
Aminoglicosídeos/administração & dosagem , Antibacterianos/administração & dosagem , Pneumonia Associada a Assistência à Saúde/tratamento farmacológico , Pneumonia Associada a Assistência à Saúde/epidemiologia , Lipoglicopeptídeos/administração & dosagem , Obesidade/epidemiologia , Insuficiência Renal/epidemiologia , Adulto , Aminoglicosídeos/uso terapêutico , Antibacterianos/uso terapêutico , Área Sob a Curva , Peso Corporal , Simulação por Computador , Humanos , Lipoglicopeptídeos/uso terapêutico , Masculino , Modelos Biológicos , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA