RESUMO
A novel photoelectrochemical sensor, employing an S-scheme heterojunction of phthalocyanine and TiO2 nanoparticles, has been developed to enable highly sensitive determination of glutathione. By integrating the favorable stability, environmental benignity, and electronic properties of the TiO2 matrix with the unique photoactivity of phthalocyanine species, the designed sensor presents a substantial linear dynamic range and a low detection limit for the quantification of glutathione. The sensitivity is attributed to efficient charge transfer and separation across the staggered heterojunction energy levels, which generates measurable photocurrent signals. Systematic variation of phthalocyanine content reveals an optimal composition that balances light harvesting capacity and electron-hole recombination rates. The incorporation of phosphotungstic acid (PTA) in sample preparation effectively minimizes interference from compounds like L-cysteine and others. Consequently, this leads to an improvement in accuracy through the reduction of impurity levels. Appreciable photocurrent enhancements are observed upon introduction of both oxidized and reduced glutathione at the optimized composite photoanode. Coupled with advantageous features of photoelectrochemical transduction such as simplicity, cost-effectiveness, and resistance to fouling, this sensor holds great promise for practical applications in complex biological media.
Assuntos
Técnicas Eletroquímicas , Glutationa , Indóis , Isoindóis , Titânio , Titânio/química , Glutationa/química , Glutationa/análise , Indóis/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Limite de Detecção , Processos Fotoquímicos , EletrodosRESUMO
Panax ginseng and Panax quinquefolius have similar bioactive components and morphological characteristics, but they are known to have different medicinal values, high-sensitive and accurate method is expected to identify the sources of ginseng products and evaluate the quality, but with a huge challenge. Our established UHPLC-TOF/MS method coupled with orthogonal partial least squares discriminant analysis (OPLS-DA) model based on 18 ginsenosides was applied to discriminate the sources of raw medicinal materials in ginseng products, and nested PCR strategy was used to discover 6 novel single nucleotide polymorphism (SNP) sites in functional dammarenediol synthase (DS) gene for genetic authentication of P. ginseng and P. quinquefolius for the first time. OPLS-DA model could identify the sources of raw ginseng materials are real or not. SNP markers were applied to identify ginseng fresh samples as well as commercial products, and proved to be successful. This established molecular method can tell exact source information of adulterants, and it was highly sensitive and specific even when total DNA amount was only 0.1 ng and the adulteration was as low as 1%. Therefore, this study made an attempt at the exploration of new type SNP marker for variety authentication and function regulation at the same time, and the combination of chemical and molecular discrimination methods provided the comprehensive evaluation and authentication for the sources of ginseng herbs and products.
Assuntos
Contaminação de Medicamentos , Medicamentos de Ervas Chinesas/análise , Ginsenosídeos/análise , Panax/genética , Polimorfismo de Nucleotídeo Único , Medicamentos de Ervas Chinesas/normas , Marcadores Genéticos , Panax/químicaRESUMO
Molecular pharmacognosy( MP) is a new interdisciplinary science,which integrates the pharmacognosy and molecular biology,and focuses on the crude drugs' classification and identification,cultivation and protection,and production of active ingredients at the molecular level. Pogostemon cablin is one of the ten major southern medicines in China,MP research on this famous herb has developed on the basis of traditional research methods,and achieved certain results. This article summarized the MP research achievements of P. cablin in recent years,the prospect of this field is also discussed to provide references for the protection,development and utilization of P. cablin resources.
Assuntos
Lamiaceae , Farmacognosia , Pogostemon , China , Biologia MolecularRESUMO
Dendrobium officinale is not only an ornamental plant, but also a valuable medicinal herb that is widely used in traditional Chinese medicine. However, distinguishing D. officinale from other Dendrobium species is usually a difficult task. In this study, we developed a rapid identification protocol for D. officinale using the loop-mediated isothermal amplification (LAMP) method. A set of primers were specifically designed to detect a modified internal transcribed spacer region of D. officinale at 65 °C within 40 min after adding SYBR® Green I, which was used for the detection of D. officinale. Unlike commonly used adulterants, reaction mixtures containing D. officinale DNA changed from orange to green, and this color change was easily observed with the naked eye. Thus, this methodology can be used to accurately differentiate D. officinale from other Dendrobium species, is quick as all D. officinale samples were amplified within 40 min, and specific as samples of the adulterants were not amplified. The specificity of this LAMP-based method was confirmed by testing 17 samples of D. officinale and 32 adulterant samples from other Dendrobium species. This LAMP-based rapid identification method does not require expensive equipment or specialized techniques and can be used in field surveys for accurate and fast on-site identification.