RESUMO
Decarbonizing road transportation is an important task in achieving China's climate goals. Illustrating the mitigation potentials of announced policies and identifying additional strategies for various vehicle fleets are fundamental in optimizing future control pathways. Herein, we developed a comprehensive analysis of carbon dioxide (CO2) emissions from on-road vehicles as well as their mitigation potentials based on real-world databases and up-to-date policy scenarios. Total CO2 emissions of China's road transportation are estimated to be 1102 million tons (Mt) in 2022 and will continue to increase if future strategies are implemented as usual. Under current development trend and announced policy controls (i.e., integrated scenario), annual CO2 emissions are estimated to peak at 1235 Mt in 2025 and then decline to approximately 200 Mt around 2050. The scenario analysis indicates that electrification of passenger vehicles emerges as the most imperative decarbonization strategy for achieving carbon peak before 2030. Additionally, fuel economy improvement of conventional vehicles is identified to be effective for CO2 emission reduction for trucks until 2035 while new energy vehicle promotion shows great mitigation potentials in the long term. This study provides insight into heterogeneous low-carbon transportation transition strategies and valuable support for achieving China's dual-carbon goals.
Assuntos
Dióxido de Carbono , Meios de Transporte , Emissões de Veículos , China , Dióxido de Carbono/análise , Veículos AutomotoresRESUMO
KEY MESSAGE: Abnormal expression of genes regulating anther and pollen development and insufficient accumulation of male sterility (MS)- related metabolites lead to MS in cybrid pummelo Male sterility (MS) is a major cause of seedlessness in citrus, which is an important trait for fresh fruit. Understanding the mechanism of MS is important for breeding seedless citrus cultivars. In this study, we dissected the transcriptional, metabolic and physiological mechanisms of MS in somatic cybrid of pummelo (G1 + HBP). G1 + HBP exhibited severe male sterility, manifesting as retarded anther differentiation, abnormal anther wall development (especially tapetum and endothecium), and deficient pollen wall formation. In the anthers of G1 + HBP, the expression of genes regulating anther differentiation and tapetum development was abnormal, and the expression of genes regulating endothecium secondary lignification thickening and pollen wall formation was down-regulated. The transcription of genes involved in MS-related biological processes, such as jasmonic acid (JA) signaling pathway, primary metabolism, flavonoid metabolism, and programmed cell death, was altered in G1 + HBP anthers, and the accumulation of MS-associated metabolites, including fatty acids, amino acids, sugars, ATP, flavonols and reactive oxygen species (ROS), was down-regulated in G1 + HBP anthers. In summary, abnormal expression of key genes regulating anther and pollen development, altered transcription of key genes involved in MS-related metabolic pathways, and insufficient accumulation of MS-related metabolites together lead to MS in G1 + HBP. The critical genes and the metabolism pathways identified herein provide new insights into the formation mechanism of MS in citrus and candidate genes for breeding seedless citrus.
Assuntos
Citrus , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Infertilidade das Plantas , Pólen , Infertilidade das Plantas/genética , Redes e Vias Metabólicas/genética , Citrus/genética , Citrus/metabolismo , Citrus/crescimento & desenvolvimento , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Transcriptoma/genética , Espécies Reativas de Oxigênio/metabolismo , Perfilação da Expressão Gênica , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismoRESUMO
ß-lactoglobulin (ß-LG) is the major allergen in dairy products, but research on the optimal conditions for antigen reduction in ß-LG using different enzymes remains limited. Therefore, this study aims to investigate the antigenicity, structural characteristics, and peptide distribution of advantageous protease hydrolysates capable of eliminating the allergenic epitopes of ß-LG selected via bioinformatics tools. The results showed that under optimal enzymatic hydrolysis conditions, the antigen reduction rates for the four advantageous proteases acting on ß-LG were 47.37 % (pepsin), 33.54 % (chymotrypsin A), 38.71 % (papain), and 45.91 % (stem bromelain), respectively. The four proteases effectively degraded ß-LG, causing shorter peptide chain formation, reduced content of highly ordered α-helix, decreased fluorescence intensity, and lower surface hydrophobicity. Furthermore, they cleaved the linear epitopes of ß-LG into peptides of varying sizes, leading to different antigen reduction rates among the hydrolysates. These findings provide a theoretical basis for developing targeted enzymatic hydrolysis technologies and low-allergenicity dairy-based materials.
RESUMO
This study investigated the impact of high-pressure processing (HPP) treatment on the structure and physicochemical properties of pectin (PEC)/carboxymethyl cellulose (CMC) composite films, along with the development of new active films incorporating emodin as an antibacterial agent. The results showed that 500 MPa/20 min HPP treatment significantly improved the tensile strength (from 45.91 ± 4.63 MPa to 52.24 ± 4.87 MPa) and elongation at the break (from 5.00 ± 1.44 % to 11.72 ± 2.97 %) of the films. It also improved the film's thermal stability and had no significant effect on its thermal degradability. Moreover, emodin was incorporated into the PEC/CMC film-forming solution and subjected to 500 MPa/20 min HPP treatment to investigate the structure, functional properties, optical properties, and antibacterial activity of the film. The emodin caused the film structural alteration, but significantly improved the water vapor barrier properties. It also reduced the film brightness and light transmission. The antibacterial assessment demonstrated that the film's antibacterial activity was correlated positively with increasing emodin content, and the number of viable cells of Staphylococcus aureus decreased by 1.29 log10 CFU/mL, 1.70 log10 CFU/mL, and 1.80 log10 CFU/mL with different levels of EM antimicrobial films after 12 h.
RESUMO
Assessing the emissions of heavy-duty diesel trucks (HDDTs) is crucial for managing air quality in megacities, especially concerning nitrogen oxides (NOX) and black carbon (BC). This study employed mobile plume chasing to monitor the real-world emissions of over 7778 HDDTs in Shenzhen. The findings indicate that the real-world NOX emission factors (EF) of China IV trucks did not differ significantly from those of China III, whereas China V and VI vehicles demonstrated fleet-averaged reductions of 27% and 85%, respectively. For China V, a significant decrease in the NOX EF for HDDTs registered after 2017 was attributed to the installation of advanced aftertreatment systems, including diesel oxidation catalysts (DOC) and Diesel Particle Filters (DPF), along with selective catalytic reduction (SCR). These technologies led to an average reduction of 42% in NOX and 61% in BC emissions. Seasonal variations were pronounced, with winter (â¼20 °C) NOX EF 40% higher than summer (â¼35 °C) levels. Conversely, BC EF decreased by 26% in winter, indicating significant impacts of ambient temperature on emissions. Spatial analysis revealed that the average NOX EF of HDDTs on east freeways was 1.4 times higher than that on urban expressways, influenced by variations in the proportion of vehicle types segmented by usage. These findings offer a comprehensive perspective on HDDTs emissions, highlighting the importance of large-scale emission monitoring through plume chasing for precise and effective control of real-world HDDTs emissions.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Óxidos de Nitrogênio , Emissões de Veículos , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Óxidos de Nitrogênio/análise , China , Poluição do Ar/estatística & dados numéricos , Veículos Automotores , Cidades , Fuligem/análise , Estações do AnoRESUMO
Implementing temporary traffic control measures is a common strategy to prevent air pollution and alleviate traffic congestion during mega-events. Accurate assessment of event-time vehicular emissions is useful for local authorities to develop effective policies. However, many previous assessments were based on policy-based scenarios, which often failed to capture the synergistic impact from other sectors (e.g., the industrial sector). Here, we conducted both traditional scenario-based ex-ante evaluation and data-driven real-time emissions tracking to evaluate the impacts of traffic restriction policies during the Summer World University Games 2023 in Chengdu, China. Real-time tracking revealed that average vehicle kilometers traveled (VKT), traffic emissions of nitrogen oxides (NOX), and volatile organic compound (VOC) decreased by 18.3 %, 37.9 %, and 18.4 %, respectively, compared to the non-event period. The scenario-based ex-ante evaluation substantially underestimated NOX emission reduction from the truck fleet due to the lack of consideration for multisectoral synergistic effects. Event-time interventions in the industrial sector accounted for an additional 18.1 % reduction in truck NOX emissions. This study underscores the importance of considering cross-sectoral synergy when establishing policies for future mega events.
RESUMO
X-linked lymphoproliferative disease (XLP1) results from SH2D1A gene mutations affecting the SLAM-associated protein (SAP). A regulated lentiviral vector (LV), XLP-SMART LV, designed to express SAP at therapeutic levels in T, NK, and NKT cells, is crucial for effective gene therapy. We experimentally identified 34 genomic regulatory elements of the SH2D1A gene and designed XLP-SMART LVs to emulate the lineage and stage-specific control of SAP. We screened them for their on-target enhancer activity in T, NK, and NKT cells and their off-target enhancer activity in B cell and myeloid populations. In combination, three enhancer elements increased SAP promoter expression up to 4-fold in on-target populations in vitro. NSG-Tg(Hu-IL15) xenograft studies with XLP-SMART LVs demonstrated up to 7-fold greater expression in on-target cells over a control EFS-LV, with no off-target expression. The XLP-SMART LVs exhibited stage-specific T and NK cell expression in peripheral blood, bone marrow, spleen, and thymic tissues (mimicking expression patterns of SAP). Transduction of XLP1 patient CD8+ T cells or BM CD34+ cells with XLP-SMART LVs restored restimulation-induced cell death and NK cytotoxicity to wild-type levels, respectively. These data demonstrate that it is feasible to create a lineage and stage-specific LV to restore the XLP1 phenotype by gene therapy.
RESUMO
Sodium serves as one of the primary cations in the central nervous system, playing a crucial role in maintaining normal brain function. In this study, we investigated alterations in sodium concentrations in the brain and/or cerebrospinal fluid across multiple models, including an aging model, a stroke model, a nitroglycerin (NTG)-induced rat migraine model, a familial hemiplegic migraine type 2 (FHM2) mouse model, and a transgenic mouse model of Alzheimer's disease (AD). Our results reveal that older rats exhibited higher sodium concentrations in cerebrospinal fluid (CSF), plasma, and various brain regions compared to their younger counterparts. Additionally, findings from the stroke model demonstrated a significant increase in sodium in the ischemic/reperfused region, accompanied by a decrease in potassium and an elevated sodium/potassium ratio. However, we did not detect significant changes in sodium in the NTG-induced rat migraine model or the FHM2 mouse model. Furthermore, AD transgenic mice showed no significant differences in sodium levels compared to wild-type mice in CSF, plasma, or the hippocampus. These results underscore the nuanced regulation of sodium homeostasis in various neurological conditions and aging, providing valuable insights into potential mechanisms underlying these alterations.
Assuntos
Envelhecimento , Doença de Alzheimer , Modelos Animais de Doenças , Camundongos Transgênicos , Transtornos de Enxaqueca , Sódio , Acidente Vascular Cerebral , Animais , Doença de Alzheimer/metabolismo , Sódio/líquido cefalorraquidiano , Sódio/sangue , Sódio/metabolismo , Ratos , Camundongos , Masculino , Acidente Vascular Cerebral/metabolismo , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/sangue , Humanos , Nitroglicerina/farmacologia , Traumatismo por Reperfusão/metabolismo , Encéfalo/metabolismo , Ratos Sprague-Dawley , Enxaqueca com AuraRESUMO
RATIONALE AND OBJECTIVES: Proliferative hepatocellular carcinoma (HCC) is associated with high invasiveness and poor prognosis. This study aimed to investigate the preoperative risk prediction and prognostic value of different radiomics models and a nomogram for proliferative HCC. MATERIALS AND METHODS: Patients were randomly divided into a training cohort (n = 156) and a validation cohort (n = 66) in a 7:3 ratio. Original and delta (the different value between imaging features extracted from two different phases) radiomics features were extracted from T1-weighted imaging (T1WI), arterial, and hepatobiliary phases to construct models using different machine learning algorithms. Logistic regression was used to select clinical independent risk factors. A nomogram was constructed by integrating the optimal radiomics model score with independent risk factors. The diagnostic efficacy and clinical utility of the models were assessed. Subsequently, patients were stratified into high-risk and low-risk subgroups based on radiomics model scores and nomogram scores, and both recurrence-free survival (RFS) and overall survival (OS) were evaluated. RESULTS: Multivariate logistic regression analysis showed that BCLC stage and combined radscore were independent predictors of proliferative HCC. The area under the curve (AUC) of the nomogram incorporating these factors was 0.838 and 0.801 in the training and validation cohorts, respectively, with good predictive performance. Multivariate Cox regression analysis shows that the delta radiomics model (DR)-predicted proliferative HCC can independently predict RFS and OS, with scores from the delta radiomics model performing best in prognostic risk stratification. CONCLUSION: The nomogram can effectively predict proliferative HCC, while different radiomics models and the nomogram can offer varying prognostic stratification values.
RESUMO
This work aimed to investigate the effect of salt concentration on the quality and microbial community of pickled peppers during fermentation, and the cross-correlation between microorganisms and quality was also revealed. The results showed that 9 volatile flavor compounds were unique to the low salt concentration group (D group), which also contained higher content of FAA, lactic acid and acetic acid than high salt concentration group (G group). Meanwhile, the samples of D2 group have a better texture properties. Firmicutes, Proteobacteria, Ascomycota, Lactobacillus, Pectobacterium, and Pseudomonas were detected as the main microbial community during the fermentation with different salt concentrations. Furthermore, the correlations analysis results indicated that the salt concentration has a significant effect on the microbial community of pickled peppers (p < 0.001), and Pediococcus, Lactobacillus, Cedecca, Issatchenkia, Pichia, Kazachstania, and Hanseniaspora were significantly correlated with flavors, which played crucial roles in the unique flavor formation of pickled peppers.
RESUMO
Citrus is a model plant for studying adventitious embryos, a form of asexual reproduction controlled by a single dominant gene, RWP. This gene has been identified as the causal gene for nucellar embryogenesis, but its function has not yet been fully understood. In this study, we used the fast-growing Fortunella hindsii as a system to explore chromatin accessibility during the nucellar embryony initiation, emphasizing elevated chromatin accessibility in polyembryonic (PO) genotypes compared to monoembryonic ones (MO). Notably, a higher level of accessible chromatin was observed in one allele of the promoter region of FhRWP, consistent with increased expression of the allele carrying the causal structural variant. By independently performing RNAi and gene editing experiments on PO genotypes, we found the downregulation of FhRWP expression could reduce the number of nucellar embryos, while its knockout resulted in abnormal axillary bud development. In overexpression experiments, FhRWP was identified as having the unique capability of inducing the embryogenic callus formation in MO stem segments, possibly through the regulation of the WUS-CLV signaling network and the ABA and cytokinin pathway, marking the inaugural demonstration of FhRWP's potential to reignite somatic cells' embryogenic fate. This study reveals the pleiotropic function of RWP in citrus and constructs a regulatory network during adventitious embryo formation, providing a new tool for bioengineering applications in plant regeneration.
Assuntos
Citrus , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Plantas , Citrus/genética , Citrus/fisiologia , Citrus/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento , Edição de Genes , Genes de Plantas/genética , GenótipoRESUMO
Capturing short-lived intermediates at the molecular level is key to understanding the mechanism and dynamics of chemical reactions. Here, we have developed a paper-in-tip bipolar electrolytic electrospray mass spectrometry platform, in which a piece of triangular conductive paper incorporated into a plastic pipette tip serves not only as an electrospray emitter but also as a bipolar electrode (BPE), thus triggering both electrospray and electrolysis simultaneously upon application of a high voltage. The bipolar electrolysis induces a pair of redox reactions on both sides of BPE, enabling both electro-oxidation and electro-reduction processes regardless of the positive or negative ion mode, thus facilitating access to complementary structural information for mechanism elucidation. Our method enables real-time monitoring of transient intermediates (such as N,N-dimethylaniline radical cation, dopamine o-quinone (DAQ) and sulfenic acid with half-lives ranging from microseconds to minutes) and transient processes (such as DAQ cyclization with a rate constant of 0.15â s-1). This platform also provides key insights into electrocatalytic reactions such as Fe (III)-catalyzed dopamine oxidation to quinone species at physiological pH for neuromelanin formation.
RESUMO
Gut microbiota can influence cognitive ability via the gut-brain axis. Lactiplantibacillus plantarum MWFLp-182 (L. plantarum MWFLp-182) was obtained from feces of long-living individuals and could exert marked antioxidant ability. Interestingly, this strain reduced the D-galactose-induced impaired cognitive ability in BALB/c mice. To comprehensively elucidate the underlying mechanism, we evaluated the colonization, antioxidant, and anti-inflammatory activities of L. plantarum MWFLp-182, along with the expression of potential genes associated with cognitive ability influenced and gut microbiota. L. plantarum MWFLp-182 enhanced the expression of anti-inflammatory cytokines, reduced the expression of proinflammatory cytokines, and increased tight junction protein expression in the colon. Moreover, L. plantarum MWFLp-182 could modify the gut microbiota. Notably, treatment with L. plantarum MWFLp-182 upregulated the expression of postsynaptic density protein-95, nuclear factor erythroid 2-related factor, nerve growth factor, superoxide dismutase, and brain-derived neurotrophic factor/neuronal nuclei, while downregulating the expression of bcl-2-associated X and malondialdehyde in the hippocampus and upregulating short-chain fatty acids against D-galactose-induced mouse brain deficits. Accordingly, L. plantarum MWFLp-182 could improve cognitive ability in a D-galactose-inducing mouse model.
Assuntos
Eixo Encéfalo-Intestino , Cognição , Galactose , Microbioma Gastrointestinal , Camundongos Endogâmicos BALB C , Probióticos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Cognição/efeitos dos fármacos , Probióticos/administração & dosagem , Probióticos/farmacologia , Masculino , Humanos , Envelhecimento , Encéfalo/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Lactobacillus plantarum , Modelos Animais de Doenças , Lactobacillaceae/genética , Lactobacillaceae/metabolismoRESUMO
Nitrogen oxide (NOx) emissions from heavy-duty diesel vehicles (HDDVs) have adverse effects on human health and the environment. On-board monitoring (OBM), which can continuously collect vehicle performance and NOx emissions throughout the operation lifespan, is recognized as the core technology for future vehicle in-use compliance, but its large-scale application has not been reported. Here, we utilized OBM data from 22,520 HDDVs in China to evaluate their real-world NOx emissions. Our findings showed that China VI HDDVs had a 73% NOx emission reduction compared with China V vehicles, but a considerable proportion still faced a significant risk of higher NOx emissions than the corresponding limits. The unsatisfactory efficiency of the emission treatment system under disadvantageous driving conditions (e.g., low speed or ambient temperature) resulted in the incompliance of NOx emissions, especially for utility vehicles (sanitation/garbage trucks). Furthermore, the observed intertrip and seasonal variability of NOx emissions demonstrated the need for a long-term continuous monitoring protocol instead of instantaneous evaluation for the OBM. With both functions of emission monitoring and malfunction diagnostics, OBM has the potential to accurately verify the in-use compliance status of large-scale HDDVs and discern the responsibility of high-emitting activities from manufacturers, vehicle operators, and driving conditions.
Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Óxidos de Nitrogênio , Emissões de Veículos , Emissões de Veículos/análise , Monitoramento Ambiental/métodos , Óxidos de Nitrogênio/análise , Poluentes Atmosféricos/análise , ChinaRESUMO
BACKGROUND: Dermatomyositis (DM) is an infrequent disease subgroup of idiopathic inflammatory myopathies characterized by distinct skin lesions. However, high heterogeneity makes clinical diagnosis and treatment of DM very challenging. OBJECTIVES: Unsupervised classification in DM patients and analysis of key factors related to clinical outcomes. METHODS: This retrospective study was conducted between 2017 and 2022 at the Department of Rheumatology, Xiangya Hospital, Central South University. 162 DM patients were enrolled for unsupervised hierarchical cluster analysis. In addition, we divided the clinical outcomes of DM patients into four subgroups: withdrawal, stabilization, aggravation, and death, and compared the clinical profiles amongst the subgroups. RESULTS: Out of 162 DM patients, three clusters were defined. Cluster 1 (n = 40) was mainly grouped by patients with prominent muscular involvement and mild Interstitial Lung Disease (ILD). Cluster 2 (n = 72) grouped patients with skin rash, anti-Melanoma Differentiation Associated protein 5 positive (anti-MDA5+), and Rapid Progressive Interstitial Lung Disease (RP-ILD). Cluster 3 (n = 50) grouped patients with the mildest symptoms. The proportion of death increased across the three clusters (cluster 3 < cluster 1 < cluster 2). STUDY LIMITATIONS: The number of cases was limited for the subsequent construction and validation of predictive models. We did not review all skin symptoms or pathological changes in detail. CONCLUSIONS: We reclassified DM into three clusters with different risks for poor outcome based on diverse clinical profiles. Clinical serological testing and cluster analysis are necessary to help clinicians evaluate patients during follow-up and conduct phenotype-based personalized care in DM.
Assuntos
Dermatomiosite , Fenótipo , Humanos , Dermatomiosite/classificação , Dermatomiosite/patologia , Dermatomiosite/sangue , Dermatomiosite/diagnóstico , Feminino , Estudos Retrospectivos , Masculino , Pessoa de Meia-Idade , Adulto , Análise por Conglomerados , Idoso , Doenças Pulmonares Intersticiais/classificação , Doenças Pulmonares Intersticiais/diagnóstico , Testes Sorológicos , Avaliação de Resultados em Cuidados de Saúde , Autoanticorpos/sangue , Helicase IFIH1 Induzida por Interferon/imunologia , Índice de Gravidade de DoençaRESUMO
The emergence of microplastics as contaminants has raised concerns regarding their potential toxicity. Recent studies on microplastic pollution caused by food packaging have drawn attention to its impact on health. However, despite being used extensively in food packaging, there is little knowledge about the toxicity of polyethylene microplastics (PE-MPs). Here, we studied the toxicity of PE-MPs on the model animal honeybees using different particle sizes (1 µm, 10 µm, 100 µm in diameter). Oral exposure to 100-µm PE-MPs resulted in elevated honeybee mortality and increased their susceptibility to pathogens. This is likely due to the mechanical disruption and gut microbial dysbiosis by PE-MPs. Snodgrassella, a core functional gut bacteria, was specifically enriched on the surface of PE-MPs, which perturbs the gut microbial communities in honeybees. Furthermore, the increased mortality in challenge trials with the opportunistic pathogen Hafnia alvei for PE-MPs pre-exposed honeybees revealed a potential health risk. These findings provide fresh insights into evaluating the potential hazards associated with PE-MPs.
Assuntos
Microbioma Gastrointestinal , Polietileno , Abelhas , Animais , Polietileno/toxicidade , Microplásticos , Plásticos , DisbioseRESUMO
Organic aerosol (OA) serves as a crucial component of fine particulate matter. However, the response of OA to changes in anthropogenic emissions remains unclear due to its complexity. The XXIV Olympic Winter Games (OWG) provided real atmospheric experimental conditions on studying the response of OA to substantial emission reductions in winter. Here, we explored the sources and variations of OA based on the observation of aerosol mass spectrometer (AMS) combined with positive matrix factorization (PMF) analysis in urban Beijing during the 2022 Olympic Winter Games. The influences of meteorological conditions on OA concentrations were corrected by CO and verified by deweathered model. The CO-normalized primary OA (POA) concentrations from traffic, cooking, coal and biomass burning during the OWG decreased by 39.8 %, 23.2 % and 65.0 %, respectively. Measures controlling coal and biomass burning were most effective in reducing POA during the OWG. For the CO-normalized concentration of secondary OA (SOA), aqueous-phase related oxygenated OA decreased by 51.8 % due to the lower relative humidity and emission reduction in precursors, while the less oxidizedoxygenated OA even slightly increased as the enhanced atmospheric oxidation processes may partially offset the efficacy of emission control. Therefore, more targeted reduction of organic precursors shall be enhanced to lower atmospheric oxidation capacity and mitigate SOA pollution.
RESUMO
The protein composition of human milk plays a crucial role in infant formula milk powder formulation. Notably, significant differences exist between bovine casein and human milk casein. Previous studies have shown that casein hydrolysates could enhance immune function; however, gastrointestinal dyspepsia in infants affects the type and function of peptides. Therefore, the present study used peptidomics to sequence and analyze hydrolyzed peptides from different casein fractions. Additionally, animal experiments were conducted to assess the functionality of these casein fractions and elucidate their differences. The results revealed variations in peptide composition among the different casein fractions of formula milk powder. Interestingly, milk powder formulated with both ß- and κ-casein (BK) exhibited significant enrichment of peptides related to the immune system. Moreover, the BK group significantly alleviated immune organ damage in cyclophosphamide-treated mice and regulated serum levels of pro-inflammatory and anti-inflammatory factors. Furthermore, feeding different casein fractions influenced the intestinal microflora of cyclophosphamide-treated mice, with the BK group mitigating the changes caused by cyclophosphamide. In conclusion, the findings suggest that BK formula in milk powder has the potential to positively enhance immunity. This study provides a robust theoretical basis for human-emulsified formula milk powder development.
Assuntos
Caseínas , Leite Humano , Humanos , Lactente , Animais , Bovinos , Camundongos , Caseínas/metabolismo , Pós/análise , Leite Humano/metabolismo , Peptídeos/farmacologia , Peptídeos/análise , Leite/químicaRESUMO
Some in-use China IV and China V heavy-duty diesel vehicles (HDDVs) with selective catalytic reduction (SCR) systems probably fail to mitigate nitrogen oxide (NOX) emissions as expected. Meanwhile, these SCR-equipped HDDVs might emit excessive ammonia (NH3). To better understand the NOX and NH3 emissions from typical HDDVs in China, seventeen in-use vehicles with various emission-control technologies were tested by using laboratory chassis dynamometers. The results indicated that individual NOX and NH3 emissions from HDDV fleets widely varied owing to differences in aftertreatment performance. China V and VI HDDVs with effectively functioning SCRs could substantially control their NOX emissions to be below the corresponding emission limits (i.e., 4.0 and 0.69 g/kWh for China V and China VI vehicles, respectively) but with a potential risk of high NH3 emissions caused by diesel exhaust fluid (DEF) overdosing. Furthermore, higher vehicle speed and payload resulted in lower NOX emissions and possibly higher NH3 emissions from HDDVs with effectively functioning SCRs, while higher NOX emissions from tampered- and non-SCR HDDVs. NOX emissions from China VI HDDVs were more sensitive to cold starts compared to China V and earlier vehicles, but there was no significant discrepancy in NH3 emissions between cold- and hot-start tests.
RESUMO
Abstract Background Dermatomyositis (DM) is an infrequent disease subgroup of idiopathic inflammatory myopathies characterized by distinct skin lesions. However, high heterogeneity makes clinical diagnosis and treatment of DM very challenging. Objectives Unsupervised classification in DM patients and analysis of key factors related to clinical outcomes. Methods This retrospective study was conducted between 2017 and 2022 at the Department of Rheumatology, Xiangya Hospital, Central South University. 162 DM patients were enrolled for unsupervised hierarchical cluster analysis. In addition, we divided the clinical outcomes of DM patients into four subgroups: withdrawal, stabilization, aggravation, and death, and compared the clinical profiles amongst the subgroups. Results Out of 162 DM patients, three clusters were defined. Cluster 1 (n = 40) was mainly grouped by patients with prominent muscular involvement and mild Interstitial Lung Disease (ILD). Cluster 2 (n = 72) grouped patients with skin rash, anti-Melanoma Differentiation Associated protein 5 positive (anti-MDA5+), and Rapid Progressive Interstitial Lung Disease (RP-ILD). Cluster 3 (n = 50) grouped patients with the mildest symptoms. The proportion of death increased across the three clusters (cluster 3 < cluster 1 < cluster 2). Study limitations The number of cases was limited for the subsequent construction and validation of predictive models. We did not review all skin symptoms or pathological changes in detail. Conclusions We reclassified DM into three clusters with different risks for poor outcome based on diverse clinical profiles. Clinical serological testing and cluster analysis are necessary to help clinicians evaluate patients during follow-up and conduct phenotype-based personalized care in DM.