Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
World J Clin Cases ; 12(5): 951-965, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38414611

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) infection is a major risk factor for chronic gastritis, affecting approximately half of the global population. H. pylori eradication is a popular treatment method for H. pylori-positive chronic gastritis, but its mechanism remains unclear. Urinary metabolomics has been used to elucidate the mechanisms of gastric disease treatment. However, no clinical study has been conducted on urinary metabolomics of chronic gastritis. AIM: To elucidate the urinary metabolic profiles during H. pylori eradication in patients with chronic gastritis. METHODS: We applied LC-MS-based metabolomics and network pharmacology to investigate the relationships between urinary metabolites and H. pylori-positive chronic gastritis via a clinical follow-up study. RESULTS: Our study revealed the different urinary metabolic profiles of H. pylori-positive chronic gastritis before and after H. pylori eradication. The metabolites regulated by H. pylori eradication therapy include cis-aconitic acid, isocitric acid, citric acid, L-tyrosine, L-phenylalanine, L-tryptophan, and hippuric acid, which were involved in four metabolic pathways: (1) Phenylalanine metabolism; (2) phenylalanine, tyrosine, and tryptophan biosynthesis; (3) citrate cycle; and (4) glyoxylate and dicarboxylate metabolism. Integrated metabolomics and network pharmacology revealed that MPO, COMT, TPO, TH, EPX, CMA1, DDC, TPH1, and LPO were the key proteins involved in the biological progress of H. pylori eradication in chronic gastritis. CONCLUSION: Our research provides a new perspective for exploring the significance of urinary metabolites in evaluating the treatment and prognosis of H. pylori-positive chronic gastritis patients.

2.
Phytochemistry ; 203: 113395, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36027969

RESUMO

Developing highly effective HIV latency-reversing agent is an inportmant approach for the treatment of AIDS via the "shock and kill" of latent HIV. In this study, two unreported modified daphnane-type diterpenes (chamaedaphnelide A and epi-chamaedaphnelide A) and one unreported tigliane-type diterpene (chamaedaphnelide B), along with four known daphnane-type diterpenes and one known tigliane-type diterpene were obtained from the leaves of Wikstroemia chamaedaphne. Chamaedaphnelide A and epi-chamaedaphnelide A represents the first A ring cleavage daphnane-type backbone. Chamaedaphnelide A, epi-chamaedaphnelide A, chamaedaphnelide B, and 6α,7α-epoxy-5ß-hydroxy-12-deoxyphorbol-13-decanoate showed HIV latency-reversing activity, especially chamaedaphnelide B and 6α,7α-epoxy-5ß-hydroxy-12-deoxyphorbol-13-decanoate displayed equally potential to positive drugs prostratin with reversing latent HIV on more than 100-fold compared to unstimulated cells. Furthermore, the activation of STAT1 was involved in the HIV latency-reversing activity of these diterpenes, firstly demonstrating that daphnane- and tigliane-type diterpenes can rapidly activate STAT1 activity. Indeed, these results also supported that activating STAT1 activity is a pathway for reversing latent HIV.


Assuntos
Fármacos Anti-HIV , Diterpenos , HIV , Latência Viral , Fármacos Anti-HIV/farmacologia , Diterpenos/farmacologia , HIV/efeitos dos fármacos , HIV/fisiologia , Infecções por HIV/tratamento farmacológico , Humanos , Folhas de Planta , Fator de Transcrição STAT1/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo , Latência Viral/efeitos dos fármacos , Wikstroemia
3.
ACS Chem Neurosci ; 12(13): 2320-2335, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34152720

RESUMO

Baicalein is an active ingredient extracted from the dried roots of the Scutellaria baicalensis Georgi. It has been demonstrated to improve memory impairment in multiple animal models; however, the underlying mechanisms remain ambiguous. The accumulation of senescent astrocytes and senescence-associated secretory phenotype (SASP) secreted by senescent astrocytes has been deemed as potential contributors to neurodegenerative diseases. Therefore, this study explored the protective effects of baicalein against astrocyte senescence and investigated the molecular mechanisms and metabolic mechanisms of baicalein against astrocyte senescence. Our results demonstrated that treatment with baicalein protects T98G cells from H2O2-induced damage, delays cell senescence, inhibits the secretion of SASP (IL-6, IL-8, TNF-α, CXCL1, and MMP-1), and inhibits SASP-related pathways NF-κB and JAK2/STAT1. 1H NMR metabolomics analysis and correlation analysis revealed that leucine was significantly correlated with SASP factors. Further study demonstrated that supplement with leucine could restrain SASP secretion, and baicalein could significantly increase leucine level through down-regulation of BCAT1 and up-regulation of SLC7A5 expression. The above results revealed that baicalein exerted protective and antisenescence effects in H2O2-induced T98G cells possibly through inhibition of SASP, suppression of JAK2/STAT1/NF-κB pathway, and regulation of leucine metabolism. Consistent results were obtained in primary astrocytes of newborn SD rats, which suggests that baicalein significantly increases viabilities, delays senescence, inhibits IL-6 secretion, and increases leucine level in H2O2-induced primary astrocytes.


Assuntos
Astrócitos , NF-kappa B , Animais , Astrócitos/metabolismo , Senescência Celular , Flavanonas , Peróxido de Hidrogênio , Janus Quinase 2 , Leucina , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT1
4.
J Nat Prod ; 84(4): 1022-1033, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33721994

RESUMO

The discovery of efficient and specific HIV-latency-reversing agents is critical for HIV therapy. Here, we developed wikstroelide E, a daphnane diterpene from the buds of Wikstroemia chamaedaphne, as a potential HIV-latency-reversing agent that is 2500-fold more potent than the drug prostratin. Based on transcriptome analysis, the underlying mechanism was that wikstroelide E regulated the MAPK, PI3K-Akt, JAK-Stat, TNF, and NF-κB signaling pathways. We clearly demonstrated that wikstroelide E reversed latent HIV infection by activating PKC-NF-κB signals, serving as a proxy for verifying the transcriptome data. Strikingly, the Tat protein contributes to the robust activation of latent HIV in wikstroelide-E-treated cells, producing an unexpected latency-reversing effect against latent HIV. This study provides the basis for the potential development of wikstroelide E as an effective HIV-latency-reversing agent.


Assuntos
Antivirais/farmacologia , Diterpenos/farmacologia , HIV-1/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Wikstroemia/química , Antivirais/isolamento & purificação , Diterpenos/isolamento & purificação , Perfilação da Expressão Gênica , Humanos , Células Jurkat , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia
5.
Bioorg Med Chem ; 29: 115868, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33191085

RESUMO

Unlike other DNA topoisomerase II (topo II) inhibitors, our recently identified acridone derivative E17 exerted strong cytotoxic activity by inhibiting topo II without causing topo II degradation and DNA damage, which promoted us to explore more analogues of E17 by expanding its chemical diversification and enrich the structure-activity relationship (SAR) outcomes of acridone-oriented chemotypes. To achieve this goal, 42 novel acridone derivatives were synthesized and evaluated for their antiproliferative efficacies. SAR investigations revealed that orientation and spatial topology of R3 substituents make greater contributions to the bioactivity, exemplified by compounds E24, E25 and E27, which has provided valuable information for guiding further development of acridone derivatives as promising drug candidates.


Assuntos
Acridonas/farmacologia , Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Acridonas/síntese química , Acridonas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
6.
Biochem Biophys Res Commun ; 513(2): 313-318, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30955862

RESUMO

Topo II inhibitors, e.g. etoposide, doxorubicin and mitoxantrone, etc., which exert their functions by trapping the covalent 'topo II-DNA cleavable complex' via intercalation into DNA base pairs, leading to DNA damage and degradation of topo II, and inducing decline of cell sensitivity and corresponding multidrug resistance (MDR). E17 is a recently identified topo II inhibitor in our lab which has validated to possess a strong topo II inhibitory activity on cell viability, colony formation, and cell migration. Especially, E17 can trigger G2/M cell cycle arrest through inhibiting chromosome condensation without causing obvious DNA damage in colorectal cancer (CRC) HCT116 cell. E17 can also induce the accumulation of topo II-DNA complex without leading to degradation of topo II, which was different from topo II inhibitors VP16 or ICRF-187, suggesting E17 might be a potential lead for further development by serving as a strong topo II inhibitor.


Assuntos
Antineoplásicos/farmacologia , Cromossomos/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromossomos/metabolismo , Cromossomos/ultraestrutura , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Descoberta de Drogas , Células HCT116 , Células HeLa , Humanos , Inibidores da Topoisomerase II/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA