Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 57, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649857

RESUMO

In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Solanum lycopersicum , Fatores de Transcrição , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Giberelinas/metabolismo , Regiões Promotoras Genéticas/genética , Etilenos/metabolismo
2.
Plants (Basel) ; 12(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36840294

RESUMO

Hydrogen gas (H2) is an important molecular messenger in animal and plant cells and is involved in various aspects of plant processes, including root organogenesis induction, stress tolerance and postharvest senescence. This study investigated the effect of H2 fumigation on the quality of Lanzhou lily scales. The results indicated the H2 remarkably declined the color variation and browning degree in Lanzhou lily scales by suppressing the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POD) and polyphenol oxidase (PPO). Moreover, H2 significantly alleviated the degradation of soluble proteins and soluble sugars in Lanzhou lily scales during postharvest storage, mitigating the decline in nutritional quality. This alleviating effect of H2 might be achieved by increasing the endogenous H2 concentration. Collectively, our data provide new insights into the postharvest quality reduction of Lanzhou lily scales mitigated by H2 fumigation.

3.
J Plant Res ; 135(2): 337-350, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35106650

RESUMO

Both strigolactones (SLs) and nitric oxide (NO) are regulatory signals with diverse roles during stress responses. At present, the interaction and mechanism of SLs and NO in tomato salt tolerance remain unclear. In the current study, tomato 'Micro-Tom' was used to study the roles and interactions of SLs and NO in salinity stress tolerance. The results show that 15 µM SLs synthetic analogs GR24 and 10 µM NO donor S-nitrosoglutathione (GSNO) promoted seedling growth under salt stress. TIS108 (an inhibitor of strigolactone synthesis) suppressed the positive roles of NO in tomato growth under salt stress, indicating that endogenous SLs might be involved in NO-induced salt response in tomato seedlings. Meanwhile, under salt stress, GSNO or GR24 treatment induced the increase of endogenous SLs content in tomato seedlings. Moreover, GR24 or GSNO treatment effectively increased the content of chlorophyll, carotenoids and ascorbic acid (ASA), and enhanced the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase), glutathione reductase (GR) and cleavage dioxygenase (CCD) enzyme. Additionally, GSNO or GR24 treatment also up-regulated the expression of SLs synthesis genes (SlCCD7, SlCCD8, SlD27 and SlMAX1) and its signal transduction genes (SlD14 and SlMAX2) in tomato seedlings under salt stress. While, a strigolactone synthesis inhibitor TIS108 blocked the increase of endogenous SLs, chlorophyll, carotenoids and ASA content, and antioxidant enzyme, GR, CCD enzyme activity and SLs-related gene expression levels induced by GSNO. Thus, SLs may play an important role in NO-enhanced salinity tolerance in tomato seedlings by increasing photosynthetic pigment content, enhancing antioxidant capacity and improving endogenous SLs synthesis.


Assuntos
Plântula , Solanum lycopersicum , Antioxidantes/metabolismo , Compostos Heterocíclicos com 3 Anéis , Lactonas/metabolismo , Lactonas/farmacologia , Óxido Nítrico/metabolismo , Plântula/fisiologia
4.
Physiol Plant ; 174(1): e13627, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35040145

RESUMO

Fleshy fruit, the most economical and nutritional value unique to flowering plants, is an important part of our daily diet. Previous studies have shown that fruit ripening is regulated by transcription factors and the plant hormone ethylene, but recent research has also shown that epigenetics also plays an essential role, especially DNA methylation. DNA methylation is the process of transferring -CH3 to the fifth carbon of cytosine residues under the action of methyltransferase to form 5-methylcytosine (5-mC). So far, most works have been focused on tomato. Tomato ripening is dynamically regulated by DNA methylation and demethylation, but the understanding of this mechanism is still in its infancy. The dysfunction of a DNA demethylase, DEMETER-like DNA demethylases 2 (DML2), prevents the ripening of tomato fruits, but immature fruits ripen prematurely under the action of DNA methylation inhibitors. Additionally, studies have shown that the relationship between fruit quality and DNA methylation is not linear, but the specific molecular mechanism is still unclear. Here, we review the recent advances in the role of DNA methylation in tomato fruit ripening, the interaction of ripening transcription factors and DNA methylation, and its effects on quality. Then, a number of questions for future research of DNA methylation regulation in tomato fruit ripening is proposed.


Assuntos
Solanum lycopersicum , Metilação de DNA/genética , Etilenos , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
5.
Planta ; 254(6): 127, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34812934

RESUMO

MAIN CONCLUSION: This review describes the interaction of gaseous signaling molecules and MAPK cascade components, which further reveals the specific mechanism of the crosstalk between MAPK cascade components and gaseous signaling molecules. Plants have evolved complex and sophisticated mitogen-activated protein kinase (MAPK) signaling cascades that are engaged in response to environmental stress. There is currently compelling experimental evidence that gaseous signaling molecules are involved in MAPK cascades. During stress, nitric oxide (NO) activates MAPK cascades to transmit stimulus signals, and MAPK cascades also regulate NO biosynthesis to mediate NO-dependent physiological processes. Activated MAPK cascades lead to phosphorylation of specific sites of aminocyclopropane carboxylic acid synthase to regulate the ethylene biosynthesis-signaling pathway. Hydrogen sulfide functions upstream of MAPKs and regulates the MAPK signaling pathway at the transcriptional level. Here, we describe the function and signal transduction of gaseous signaling molecules involved in MAPK cascades and focus on introducing and discussing the recent data obtained in this field concerning the interaction of gaseous signaling molecules and MAPK cascades. In addition, this article outlines the direction and challenges of future work and further reveals the specific mechanism of the crosstalk between MAPK cascade components and gaseous signaling molecules.


Assuntos
Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Plantas/metabolismo
6.
Langmuir ; 37(3): 1235-1246, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33434429

RESUMO

In this study, the effect of sodium dodecyl sulfonate (SDS) on the foam stability of dodecylamine (DDA) and on its adsorption configuration at the gas-liquid interface was investigated. Froth stability experiments, surface tension measurements, time-of-flight secondary-ion mass spectrometry measurements, and molecular dynamics simulation calculations were performed in this investigation. The results revealed that the foam stability of DDA solution was extremely strong, and the addition of SDS could decrease the foam stability when the concentration of DDA was less than a certain value. The decrease in foam stability could be ascribed to several reasons, namely, the big cross-sectional area of SDS at the gas-liquid interface and low adsorption capacity of surfactants at the gas-liquid interface, the high surface tension, the change in the double-layer structure, the small thickness of the gas-liquid interfacial layer, the weak interaction intensity between the head groups of the surfactants and the water molecules, the strong movement ability of the water molecules around the head groups, and the sparse and less upright arrangement configuration of molecules at the gas-liquid interface. These findings can greatly help in solving the strong foam stability problem in DDA flotation and provide a method for reducing foam stability.

7.
Health Inf Sci Syst ; 7(1): 19, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31656592

RESUMO

Clinical decision support using data mining techniques offers more intelligent way to reduce the decision error in the last few years. However, clinical datasets often suffer from high missingness, which adversely impacts the quality of modelling if handled improperly. Imputing missing values provides an opportunity to resolve the issue. Conventional imputation methods adopt simple statistical analysis, such as mean imputation or discarding missing cases, which have many limitations and thus degrade the performance of learning. This study examines a series of machine learning based imputation methods and suggests an efficient approach to in preparing a good quality breast cancer (BC) dataset, to find the relationship between BC treatment and chemotherapy-related amenorrhoea, where the performance is evaluated with the accuracy of the prediction. To this end, the reliability and robustness of six well-known imputation methods are evaluated. Our results show that imputation leads to a significant boost in the classification performance compared to the model prediction based on listwise deletion. Furthermore, the results reveal that most methods gain strong robustness and discriminant power even the dataset experiences high missing rate (> 50%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA