Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063071

RESUMO

Bio-stimulants, such as selenium nanoparticles and melatonin, regulate melon growth. However, the effects of individual and combined applications of selenium nanoparticles and melatonin on the growth of melon seedlings have not been reported. Here, two melon cultivars were sprayed with selenium nanoparticles, melatonin, and a combined treatment, and physiological and biochemical properties were analyzed. The independent applications of selenium nanoparticles, melatonin, and their combination had no significant effects on the plant heights and stem diameters of Jiashi and Huangmengcui melons. Compared with the controls, both selenium nanoparticle and melatonin treatments increased soluble sugars (6-63%) and sucrose (11-88%) levels, as well as the activity of sucrose phosphate synthase (171-237%) in melon leaves. The phenylalanine ammonia lyase (29-95%), trans cinnamate 4-hydroxylase (32-100%), and 4-coumaric acid CoA ligase (26-113%), as well as mRNA levels, also increased in the phenylpropanoid metabolism pathway. Combining the selenium nanoparticles and melatonin was more effective than either of the single treatments. In addition, the levels of superoxide dismutase (43-130%), catalase (14-43%), ascorbate peroxidase (44-79%), peroxidase (25-149%), and mRNA in melon leaves treated with combined selenium nanoparticles and melatonin were higher than in controls. The results contribute to our understanding of selenium nanoparticles and melatonin as bio-stimulants that improve the melon seedlings' growth by regulating carbohydrate, polyamine, and antioxidant capacities.


Assuntos
Cucurbitaceae , Melatonina , Nanopartículas , Poliaminas , Plântula , Selênio , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo , Selênio/farmacologia , Melatonina/farmacologia , Cucurbitaceae/crescimento & desenvolvimento , Cucurbitaceae/efeitos dos fármacos , Cucurbitaceae/metabolismo , Nanopartículas/química , Poliaminas/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo
2.
ACS Nano ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047071

RESUMO

Nano-selenium (Nano-Se), as a biological stimulant, promotes plant growth and development, as well as defense against biotic and abiotic stresses. Glutathione (GSH) is a crucial antioxidant and is also involved in the plant defense response to various stresses. In this study, the efficacy of combined treatment of Nano-Se and GSH (SeG) on the resistance of cucumber plants to Botrytis cinerea was investigated in terms of the plant phenotype, gene expression, and levels of accumulated metabolites using transcriptomic and metabolomic analyses. The exogenous application of SeG significantly enhanced plant growth and increased photosynthetic pigment contents and capacity. Notably, B. cinerea infection was reduced markedly by 41.9% after SeG treatment. At the molecular level, the SeG treatment activated the alpha-linolenic acid metabolic pathway and upregulated the expression of genes responsible for jasmonic acid (JA) synthesis, including LOX (210%), LOX4 (430%), AOS1 (100%), and AOC2 (120%), therefore promoting JA accumulation in cucumber. Intriguingly, the level of cucurbitacin, an important phytoalexin in cucurbitaceous plants, was found to be increased in SeG-treated cucumber plants, as was the expression of cucurbitacin biosynthesis-related genes OSC (107.5%), P450 (440.8%,31.6%), and ACT (414.0%). These genes were also upregulated by JA treatment, suggesting that JA may be an upstream regulator of cucurbitacin biosynthesis. Taken together, this study demonstrated that pretreatment of cucumber plants with SeG could activate the JA signaling pathway and promote cucurbitacin biosynthesis to enhance the resistance of the plants to B. cinerea infection. The findings also indicate that SeG is a promising biostimulant for protecting cucumber plants from B. cinerea infection without growth loss.

3.
J Hazard Mater ; 473: 134542, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776809

RESUMO

Extensively applied glufosinate (GLU) will trigger molecular alterations in nontarget tea plants (Camellia sinensis), which inadvertently disturbs metabolites and finally affects tea quality. The mechanistic response of tea plants to GLU remains unexplored. This study investigated GLU residue behavior, the impact on photosynthetic capacity, specialized metabolites, secondary pathways, and transcript levels in tea seedlings. Here, GLU mainly metabolized to MPP and accumulated more in mature leaves than in tender ones. GLU catastrophically affected photosynthesis, leading to leaf chlorosis, and decreased Fv/Fm and chlorophyll content. Physiological and biochemical, metabolomics, and transcriptomics analyses were integrated. Showing that GLU disrupted the photosynthetic electron transport chain, triggered ROS and antioxidant system, and inhibited photosynthetic carbon fixation. GLU targeted glutamine synthetase (GS) leading to the accumulation of ammonium and the inhibition of key umami L-theanine, causing a disorder in nitrogen metabolism, especially for amino acids synthesis. Interestingly, biosynthesis of primary flavonoids was sacrificed for defensive phenolic acids and lignin formulation, leading to possible losses in nutrition and tenderness in leaves. This study revealed the defense intricacies and potential quality deterioration of tea plants responding to GLU stress. Valuable insights into detoxification mechanisms for non-target crops post-GLU exposure were offered.


Assuntos
Aminobutiratos , Camellia sinensis , Fotossíntese , Folhas de Planta , Camellia sinensis/genética , Camellia sinensis/metabolismo , Camellia sinensis/efeitos dos fármacos , Aminobutiratos/toxicidade , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Glutamato-Amônia Ligase/metabolismo , Glutamato-Amônia Ligase/genética , Estresse Fisiológico , Metabolômica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Herbicidas/toxicidade , Multiômica , Glutamatos
4.
Nano Lett ; 24(20): 5929-5936, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38655909

RESUMO

Multiferroic materials provide robust and efficient routes for the control of magnetism by electric fields, which have been diligently sought after for a long time. Construction of two-dimensional (2D) vdW multiferroics is a more exciting endeavor. To date, the nonvolatile manipulation of magnetism through ferroelectric polarization still remains challenging in a 2D vdW heterostructure multiferroic. Here, we report a van der Waals (vdW) heterostructure multiferroic comprising the atomically thin layered antiferromagnet (AFM) CrI3 and ferroelectric (FE) α-In2Se3. We demonstrate anomalously nonreciprocal and nonvolatile electric-field control of magnetization by ferroelectric polarization. The nonreciprocal electric control originates from an intriguing antisymmetric enhancement of interlayer ferromagnetic coupling in the opposite ferroelectric polarization configurations of α-In2Se3. Our work provides numerous possibilities for creating diverse heterostructure multiferroics at the limit of a few atomic layers for multistage magnetic memories and brain-inspired in-memory computing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA