RESUMO
Insufficient milk supply is a widespread issue faced by women globally and associated with a higher risk of health problems in infants and mothers. Hemerocallis citrina Baron, commonly known as daylily, is a perennial edible plant often used in traditional Asian cuisine to promote lactation. However, the active compound(s) and mechanism of its lactation-promoting effect remain unclear. This study aimed to confirm the traditional use of daylily in promoting lactation and investigate its potential active components and underlying molecular mechanisms. Our results showed that the aqueous extracts of H. citrina Baroni (HAE) significantly enhanced milk production, and the serum levels of lactation-related hormones, and promoted mammary gland development in lactating rats, as well as increased the levels of milk components in bovine mammary epithelial cells (BMECs) (p < 0.05). UHPLC-Q-Exactive Orbitrap-MS analysis revealed that hexamethylquercetin (HQ) is the representative flavonoid component in HAE, accounting for 42.66% of the total flavonoids. An integrated network pharmacology and molecular docking analysis suggested that HQ may be the potential active flavonoid in HAE that promotes lactation, possibly supporting lactation by binding to key target proteins such as STAT5A, PIK3CA, IGF1R, TP53, CCND1, BCL2, INS, AR, and DLD. Cell experiments further demonstrated that HQ could promote cell proliferation and the synthesis of milk proteins, lactose, and milk fat in BMECs. Transcriptomic analysis combined with a quantitative reverse transcription polymerase chain reaction (RT-qPCR) revealed that both HAE and HQ exert a lactation-promoting function mainly through regulating the expression of key genes in the PI3K-Akt signaling pathway.
RESUMO
Plant derived polysaccharides can enhance immune function in the human body, effectively prevent diseases, and reduce the probability of bacterial infections. Ginkgo crude polysaccharide (GCP) was obtained from Ginkgo biloba by ultrasonic-assisted hot water extraction. Our data showed that the best extraction conditions of GCP were as follows: extraction temperature 80 °C, ultrasonic time 35 min, extraction time 3 h, and solidâliquid ratio 1:30. Fourier transform infrared spectrometer (FT-IR) data showed that this polysaccharide might be an acidic polysaccharide with a carboxylic acid ring structure. Further studies implied that GCP was mainly composed of glucose, galacturonic acid, rhamnose, galactose and arabinose, accounting for 39.45 %, 25.01 %, 15.40 %, 11.94 % and 4.25 %, respectively. 0.1, 1 and 10 mg/mL GCP reduced the release of inflammatory factors in RAW264.7 cells via inhibition of the nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) signalling pathway. GCP was separated into five components with different molecular weights by an ultrafiltration membrane. Our data showed that GPa with a molecular weight ≥100 kDa was the main component of GCP. 1 mg/mL GPa, GPb, GPc and GPd had anti-inflammatory activities, and 1 mg/mL GPa had the best anti-inflammatory activities. Our results preliminarily reveal the elements and biological activity of GCP, which will provide a reference for the development of Ginkgo biloba.
RESUMO
Freezing storage is a common preservation method for industrialized duck meat. However, both the frozen storage and thawing processes of meat can affect meat quality. Therefore, appropriate thawing methods are crucial for maintaining good meat quality. In this study, a pulsed electric field (PEF) was used for thawing zhijiang duck meat and the freshed duck meats were used as control. Optimization of the PEF-assisted thawing process and its effect on the quality of zhijiang duck meat were analyzed. Our data showed that the shear force in the 2 kV/cm PEF-assisted thawing group was the lowest in PEF-assisted thawing groups. The color of zhijiang duck meat in the 2 kV/cm PEF-assisted thawing group was optimal. The 2 kV/cm PEF-assisted thawing could improve the texture characteristics of zhijiang duck meat and enhance water holding capacity of zhijiang duck meat. PEF-assisted thawing could better maintain the microstructure of zhijiang duck meat. Our data showed that if the intensity or duration of PEF treatment is too high, the quality of duck meat will actually decrease. Therefore, appropriate parameters should be selected in practical applications, which will provide a reference for the application of PEF-assisted thawing on the market.
RESUMO
Macroautophagy/autophagy is essential for maintaining glucose homeostasis, but the mechanisms by which cells sense glucose starvation and initiate autophagy are not yet fully understood. Recently, we reported that the assembly of a Ca2+-triggered Snf1-Bmh1/Bmh2-Atg11 complex initiates autophagy in response to glucose starvation. Our research reveals that during glucose starvation, the efflux of vacuolar Ca2+ increases cytoplasmic Ca2+ levels, which activates the protein kinase Rck2. Rck2-mediated phosphorylation of Atg11 enhances its interaction with Bmh1 and Bmh2. This interaction recruits the Snf1-Sip1-Snf4 complex, which is located on the vacuolar membrane, to the phagophore assembly site (PAS), leading to the activation of Atg1 and the initiation of autophagy. In summary, we have identified a previously unrecognized signaling pathway involved in glucose starvation-induced autophagy, where Ca2+ acts as a fundamental signaling molecule that links energy stress to the formation of the autophagy initiation complex.Abbreviation: AMPK: AMP-activated protein kinase; ATG: autophagy related; co-IP: co-immunoprecipitation; MAPK: mitogen-activated protein kinase; PAS: phagophore assembly site; ULK1: unc-51 like autophagy activating kinase 1.
RESUMO
This study aimed to improve the eating quality of yellow-feathered broiler chicks by feeding them corn-soybean meal diets supplemented with 250, 500, and 1,000 mg/kg quercetin. we examined the impact of varying doses of dietary quercetin on the sensory quality of chicken breast meat as well as on the antioxidant enzymes, antioxidant-related signaling molecules, structure and thermal stability of myofibrillar protein (MPs), and microstructure of myogenic fibers in the meat during 24 h of postslaughter aging. Additionally, we investigated the potential correlations among antioxidant capacity, MP structure, and meat quality parameters. The results indicated that dietary supplementations with 500 and 1,000 mg/kg quercetin improved the physicochemical properties and eating quality of yellow-feathered broiler chicken breast meat during 12 to 24 h postslaughter. Additionally, quercetin improved the postslaughter oxidative stress status and reduced protein and lipid oxidation levels. It also increased hydrogen bonding interactions and α-helix content during 6 to 12 h postslaughter and decreased ß-sheet content during 12 to 24 h postslaughter in chicken breast MP. This resulted in improved postslaughter MP structure and thermal stability. The correlation results indicated that the enhancement of antioxidant capacity and MP structure enhanced the physicochemical and edible qualities of yellow-feathered broiler chicken breast meat. In conclusion, the current findings suggest that dietary supplementation with quercetin is an ideal approach for improving the eating quality of chicken meat, thereby broadening our understanding of theoretical and technological applications for improving the quality of chicken.
Assuntos
Ração Animal , Antioxidantes , Galinhas , Dieta , Suplementos Nutricionais , Carne , Quercetina , Animais , Quercetina/administração & dosagem , Suplementos Nutricionais/análise , Ração Animal/análise , Dieta/veterinária , Carne/análise , Carne/normas , Relação Dose-Resposta a Droga , Oxirredução , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Distribuição AleatóriaRESUMO
Limosilactobacillus fermentum (L. fermentum) is widely used in industrial food fermentations, and its probiotic and health-promoting roles attracted much attention in the past decades. In this work, the probiotic potential of L. fermentum 664 isolated from Chinese fermented pickles was assessed. In addition, the anti-inflammatory properties and mechanisms were investigated using lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Results indicated that L. fermentum 664 demonstrated excellent acid and bile salt tolerance, adhesion capability, antimicrobial activity, and safety profile. L. fermentum 664 downregulated the release of inflammatory mediators, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and cyclooxygenase-2 (COX-2) stimulated with LPS. Moreover, L fermentum 664 inhibited the nuclear translocation of the nuclear factor κB (NF-κB) and the activation of mitogen-activated protein kinases (MAPKs) induced by LPS. This action was associated with a reduction in reactive oxygen species (ROS) levels and an enhanced expression of heme oxygenase-1 (HO-1) protein. Additionally, whole genome sequencing indicated that L. fermentum 664 contained genes that encode proteins with antioxidant and anti-inflammatory functions, including Cytochrome bd ubiquinol oxidase subunit I (CydA), Cytochrome bd ubiquinol oxidase subunit II (CydB), and NAD(P)H dehydrogenase quinone 1 (NQO1). In conclusion, our study suggested that L. fermentum 664 has the potential to become a probiotic and might be a promising strategy for the prevention of inflammation.
RESUMO
High glucose levels can lead to the apoptosis of islet ß cells, while autophagy can provide cytoprotection and promote autophagic cell death. Vitamin B12, a water-soluble B vitamin, has been shown to regulate insulin secretion and increase insulin sensitivity. However, the precise mechanism of action remains unclear. In this study, we investigated the influence of vitamin B12 on high glucose-induced apoptosis and autophagy in RIN-m5F cells to elucidate how vitamin B12 modulates insulin release. Our results demonstrate that exposure to 45 mM glucose led to a significant increase in the apoptosis rate of RIN-m5F cells. The treatment with vitamin B12 reduced the apoptosis rate and increased the number of autophagosomes. Moreover, vitamin B12 increased the ratio of microtubule-associated protein 1 light chain 3 beta to microtubule-associated protein 1 light chain 3 alpha (LC3-II/LC3-I), while decreasing the amount of sequestosome 1 (p62) and inhibiting the phosphorylation of p70 ribosomal protein S6 kinase (p70S6K) under both normal- and high-glucose conditions. The additional experiments revealed that vitamin B12 inhibited high glucose-induced apoptosis. Notably, this protective effect was attenuated when the autophagy inhibitor 3-methyladenine was introduced. Our findings suggest that vitamin B12 protects islet ß cells against apoptosis induced by high glucose levels, possibly by inducing autophagy.
Assuntos
Glucose , Vitamina B 12 , Vitamina B 12/farmacologia , Glucose/farmacologia , Autofagia , Apoptose , Proteínas Associadas aos Microtúbulos/metabolismoRESUMO
Objective: To investigate the expression and correlation of COX-2 and NUCB1 in colorectal adenocarcinoma and adjacent tissues. Methods: The expression of COX-2 and NUCB1 and their effects on prognosis were predicted using bioinformatics. Immunohistochemistry was used to identify the expression of two molecules in 56 cases of colorectal adenocarcinoma and the surrounding tissues. The expression of two molecules and their association with clinicopathological variables were examined using the chi-square test. The association between COX-2 and NUCB1 was investigated using the Spearman correlation test. Results: The STRING database revealed that COX-2 and NUCB1 were strongly linked. According to the UALCAN and HPA database, COX-2 was upregulated while NUCB1 was downregulated in colorectal adenocarcinoma, both at the protein and gene levels. The OS times for COX-2 and NUCB1 high expression, however, exhibited the same patterns. The rate of positive COX-2 immunohistochemical staining in cancer tissues was 69.64% (39/56), which was significantly higher than the rate in healthy tissues 28.57% (16/56). NUCB1 was expressed positively in cancer tissues at a rate of 64.29% (36/56) compared to just 19.64% (11/56) in neighboring tissues. The positive expression levels of COX-2 and NUCB1 were both closely related to clinical stage, differentiation degree, and lymphatic metastases (P < 0.05). In colorectal cancer, COX-2 and NUCB1 expression were significantly correlated (rs = 0.6312, P < 0.001). Conclusion: Both COX-2 and NUCB1 are overexpressed and significantly associated in colorectal adenocarcinoma.
Assuntos
Adenocarcinoma , Neoplasias Colorretais , Ciclo-Oxigenase 2 , Nucleobindinas , Humanos , Adenocarcinoma/genética , Neoplasias Colorretais/genética , Ciclo-Oxigenase 2/genética , Imuno-Histoquímica , Prognóstico , Nucleobindinas/genéticaRESUMO
Carbon quantum dots (CQDs) from heat-treated foods show toxicity, but the mechanisms of toxicity and removal of CQDs have not been elucidated. In this study, CQDs were purified from roasted coffee beans through a process of concentration, dialysis and lyophilization. The physical properties of CQDs, the degree and mechanism of toxicity and the removal method were studied. Our results showed that the size of CQDs roasted for 5 min, 10 min and 20 min were about 5.69 ± 1.10 nm, 2.44 ± 1.08 nm and 1.58 ± 0.48 nm, respectively. The rate of apoptosis increased with increasing roasting time and concentration of CQDs. The longer the roasting time of coffee beans, the greater the toxicity of CQDs. However, the caspase inhibitor Z-VAD-FMK was not able to inhibit CQDs-induced apoptosis. Moreover, CQDs affected the pH value of lysosomes, causing the accumulation of RIPK1 and RIPK3 in lysosomes. Treatment of coffee beans with a pulsed electric field (PEF) significantly reduced the yield of CQDs. This indicates that CQDs induced lysosomal-dependent cell death and increased the rate of cell death through necroptosis. PEF is an effective way to remove CQDs from roasted coffee beans.
RESUMO
m-Cresol and p-cresol are widely used in medicine and pesticides as important chemical intermediates. They are generally produced as a mixture in industry and are difficult to separate due to the similarities in both chemical structures and physical properties. The adsorption behaviours of m-cresol and p-cresol on zeolites (NaZSM-5 and HZSM-5) with different Si/Al ratios have been compared by static experiments. Selectivity on NaZSM-5(Si/Al = 80) could be greater than 6.0. Adsorption kinetics and isotherms were investigated in detail. The kinetic data was correlated by PFO, PSO, and ID models, the NRMSE of which were 14.03%, 9.41%, and 21.11%, respectively. In the meanwhile, according to the NRMSE of Langmuir (6.01%), Freundlich (57.80%), D-R (1.1%), and Temkin (0.56%) isotherms, adsorption on NaZSM-5(Si/Al = 80) was mainly a monolayer and chemical adsorption process. It was endothermic for m-cresol and exothermic for p-cresol. The Gibbs free energy, entropy, and enthalpy were calculated accordingly. The adsorption of cresol isomers on NaZSM-5(Si/Al = 80) were both spontaneous, and it was exothermic (ΔH = -37.11kJ/mol) for p-cresol while endothermic (ΔH = 52.30kJ/mol) for m-cresol. Additionally, ΔS were respectively -0.05 and 0.20 kJ·mol-1·K-1for p-cresol and m-cresol, which were both close to zero. The adsorption was mainly driven by enthalpy. The result of breakthrough further demonstrated m-cresol and p-cresol could be separated effectively by NaZSM-5(Si/Al = 80). Additionally, the selectivity increased from 7.53 to 14.72 after four cycles regeneration with 9.95% and 53.96% decreases in the adsorption amounts for m-cresol and p-cresol, respectively. In conclusion, NaZSM-5(Si/Al = 80) could be a feasible adsorbent for the separation of m-cresol and p-cresol.
RESUMO
In this study, a double resonator piezoelectric cytometry (DRPC) technology based on quartz crystal microbalance (QCM) was first employed to identify HeLa cell pyroptosis and apoptosis by monitoring cells' mechanical properties in a real-time and non-invasive manner. AT and BT cut quartz crystals with the same frequency and surface conditions were used concurrently to quantify the cells-exerted surface stress (ΔS). It is the first time that cells-exerted surface stress (ΔS) and cell viscoelasticity have been monitored simultaneously during pyroptosis and apoptosis. The results showed that HeLa pyroptotic cells exerted a tensile stress on quartz crystal along with an increase in the elastic modulus (G'), viscous modulus (Gâ³), and a decrease of the loss tangent (Gâ³/G'), whereas apoptotic cells exerted increasing compressive stress on quartz crystal along with a decrease in G', Gâ³ and an increase in Gâ³/G'. Furthermore, engineered GSDMD-/--DEVD- HeLa cells were used to investigate drug-induced disturbance and testify the mechanical responses during the processes of pyroptosis and non-pyroptosis. These findings demonstrated that the DRPC technology can serve as a precise cytomechanical sensor capable of identifying pyroptosis and apoptosis, providing a novel method in cell death detection and paving the road for pyroptosis and apoptosis related drug evaluation and screening.
Assuntos
Apoptose , Quartzo , Humanos , Células HeLa , Quartzo/química , Módulo de Elasticidade , Técnicas de Microbalança de Cristal de QuartzoRESUMO
BACKGROUND: Despite the wide clinical application of checkpoint inhibitor immunotherapy in lung adenocarcinoma, its limited benefit to patients remains puzzling to researchers. One of the mechanisms of immunotherapy resistance may be the dysregulation of lactate metabolism in the immunosuppressive tumor microenvironment (TME), which can inhibit dendritic cell maturation and prevent T-cell invasion into tumors. However, the key genes related to lactate metabolism and their influence on the immunotherapeutic effects in lung adenocarcinoma have not yet been investigated in depth. METHODS: In this study, we first surveyed the dysregulated expression of genes related to lactate metabolism in lung adenocarcinoma and then characterized their biological functions. Using machine learning methods, we constructed a lactate-associated gene signature in The Cancer Genome Atlas cohort and validated its effectiveness in predicting the prognosis and immunotherapy outcomes of patients in the Gene Expression Omnibus cohorts. RESULTS: A 7-gene signature based on the metabolomics related to lactate metabolism was found to be associated with multiple important clinical features of cancer and was an independent prognostic factor. CONCLUSIONS: These results suggest that rather than being simply a metabolic byproduct of glycolysis, lactate in the TME can affect immunotherapy outcomes. Therefore, the mechanism underlying this effect of lactate is worthy of further study.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Microambiente Tumoral/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Prognóstico , Imunoterapia/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , LactatosRESUMO
Vitamin B6 may alleviate diabetes by regulating insulin secretion and increasing insulin sensitivity, but its mechanism remains to be explored. In this study, vitamin B6-mediated autophagy and high glucose-induced apoptosis were tested to investigate the mechanism by which vitamin B6 regulates insulin release. The results showed that 20 mM glucose increased the apoptosis rate from 10.39% to 22.44%. Vitamin B6 reduced the apoptosis rate of RIN-m5F cells from 22.44% to 11.31%. Our data also showed that the vitamin B6 content in processed eggs was decreased and that the hydrothermal process did not affect the bioactivity of vitamin B6. Vitamin B6 increased the number of autophagosomes and the ratio of autophagosome marker protein microtubule associated protein 1 light chain 3 beta to microtubule associated protein 1 light chain 3 alpha (LC3-II/LC3-I). It also decreased the amount of sequetosome 1 (SQSTM1/p62) and inhibited the phosphorylation of p70 ribosomal protein S6 kinase (p70S6K) under normal and high glucose stress. Another study showed that vitamin B6 inhibited the apoptosis rate, whereas the autophagy inhibitor 3-methyladenine (3-MA) blocked the protective effect of vitamin B6 against apoptosis induced by high glucose. The hydrothermal process decreased the vitamin B6 content in eggs but had no effect on the cytoprotective function of vitamin B6 in RIN-m5f cells. In conclusion, we demonstrated that vitamin B6-mediated autophagy protected RIN-m5f cells from high glucose-induced apoptosis might via the mTOR-dependent pathway. Our data also suggest that low temperatures and short-term hydrothermal processes are beneficial for dietary eggs.
RESUMO
The Warburg effect, one of the hallmarks of tumors, produces large amounts of lactate and generates an acidic tumor microenvironment via using glucose for glycolysis. As a metabolite, lactate not only serves as a substrate to provide energy for supporting cell growth and development but also acts as an important signal molecule to affect the biochemical functions of intracellular proteins and regulate the biological functions of different kinds of cells. Notably, histone lysine lactylation (Kla) is identified as a novel post-modification and carcinogenic signal, which provides the promising and potential therapeutic targets for tumors. Therefore, the metabolism and functional mechanism of lactate are becoming one of the hot fields in tumor research. Here, we review the production of lactate and its regulation on immunosuppressive cells, as well as the important role of Kla in hepatocellular carcinoma. Lactate and Kla supplement the knowledge gap in oncology and pave the way for exploring the mechanism of oncogenesis and therapeutic targets. Research is still needed in this field.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Glicólise , Humanos , Terapia de Imunossupressão , Ácido Láctico/metabolismo , Microambiente TumoralRESUMO
Ascoviruses are double-stranded DNA viruses that are pathogenic to noctuid larvae. In vitro infection causes the cells to fail to replicate and proliferate normally. However, the molecular mechanisms are unclear. In this study, the transmission electron microscopy data of infected-Spodoptera exigua (Hübner) fat body cells (SeFB, IOZCAS-SpexII-A cells) showed that virions were internalized in phagocytic vesicles, but not in the nucleus. FACS of cell-cycle progression was performed in SeFB cells infected with Heliothis virescens ascovirus 3h (HvAV-3h). The cell cycle phase distributions of the SeFB cells were G1 = 29.52 ± 1.10%, S = 30.33 ± 1.19%, and G2 /M = 40.06 ± 0.75%. The cell culture doubling time was approximately 24 h. The G1 , S, and G2 /M phases were each approximately 8 h. The unsynchronized or synchronized cells were arrested at G2 /M phase after infection with HvAV-3h. Our data also showed that cells with more than 4N DNA content appeared in the HvAV-3h-treated group. While the mRNA levels of cyclin B1 , cyclin H, and cyclin-dependent kinase 1 (CDK1) were downregulated after HvAV-3h infection, the mRNA expression levels of cyclin A, cyclin D, and cyclin B2 were not significantly changed. Western blotting results showed that the expression of cyclin B1 and CDK1 in infected SeFB cells within 24 h postinfection (hpi), and HvAV-3h infection inhibited the expression of cyclin B1 and CDK1 at 12-24 hpi. Overall, these data implied that HvAV-3h infection leads to an accumulation of cells in the G2 /M phases by downregulating the expression of cyclin B1 and CDK1.
Assuntos
Ascoviridae , Ciclo Celular , Corpo Adiposo , Animais , Ascoviridae/patogenicidade , Proteína Quinase CDC2/genética , Divisão Celular , Ciclina B1/genética , Corpo Adiposo/citologia , Corpo Adiposo/virologia , RNA Mensageiro , Spodoptera/genética , Spodoptera/virologiaRESUMO
BACKGROUND AND AIMS: HCC is one of the main types of primary liver cancer, with high morbidity and mortality and poor treatment effect. Tripartite motif-containing protein 11 (TRIM11) has been shown to promote tumor formation in lung cancer, breast cancer, gastric cancer, and so on. However, the specific function and mechanism of TRIM11 in HCC remain open for study. APPROACH AND RESULTS: Through clinical analysis, we found that the expression of TRIM11 was up-regulated in HCC tissues and was associated with high tumor node metastasis (TNM) stages, advanced histological grade, and poor patient survival. Then, by gain- and loss-of-function investigations, we demonstrated that TRIM11 promoted cell proliferation, migration, and invasion in vitro and tumor growth in vivo. Mechanistically, RNA sequencing and mass spectrometry analysis showed that TRIM11 interacted with pleckstrin homology domain leucine-rich repeats protein phosphatase 1 (PHLPP1) and promoted K48-linked ubiquitination degradation of PHLPP1 and thus promoted activation of the protein kinase B (AKT) signaling pathway. Moreover, overexpression of PHLPP1 blocked the promotional effect of TRIM11 on HCC function. CONCLUSIONS: Our study confirmed that TRIM11 plays an oncogenic role in HCC through the PHLPP1/AKT signaling pathway, suggesting that targeting TRIM11 may be a promising target for the treatment of HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Leucina , Neoplasias Hepáticas/patologia , Domínios de Homologia à Plecstrina , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Fosfatase 1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina , Ubiquitina-Proteína Ligases/metabolismoRESUMO
The polymorphism of apremilast has been investigated. Two polymorphs have been identified and characterized by differential scanning calorimeter, fourier transform infrared spectroscopy, and powder X-ray diffractometer. Solubilities of apremilast forms B and E in three binary solvents of methanol-water, acetonitrile-water, and acetonitrile-methanol have been measured using the static method at a temperature ranging from 288.15 K to 328.15 K under standard atmospheric pressure. Subsequently, the solubility data have been analyzed using the Wilson, NRTL, and UNIQUAC thermodynamic models, respectively. Furthermore, the Gibbs energy of solution and the radial distribution function have been calculated using the molecular simulation method to evaluate the dissolution mechanism. The Gibbs energy of solution reveals that the rank of solute-solvent interaction correlated well with solubility order in binary solvent mixtures, and the radial distribution function indicates that weakening of solvent-solvent interaction led to an increase in solubility.
Assuntos
Solubilidade , Varredura Diferencial de Calorimetria , Solventes , Talidomida/análogos & derivados , TermodinâmicaRESUMO
The solubility data of rifamycin S were measured in isopropanol, butyl acetate, and their mixed solvents across the temperature range of 283.15-323.15 K by the gravimetric method. The results demonstrate that the solubility of rifamycin S increases with the increasing temperature in the two pure solvents, and in the mixed solvents, it increases first and then decreases with increasing butyl acetate content. The experimental data of rifamycin S in the mixed solvents were better correlated using the modified Apelblat equation and ideal model equation. Furthermore, the relevant thermodynamic parameters of the dissolution process were determined based on the van't Hoff equation. The obtained dissolution enthalpy and Gibbs free energy are positive in all cases, which indicate that the dissolving process of rifamycin S is endothermic and nonspontaneous. The supersolubility data of rifamycin S were measured by the laser and thermal analytic method. The results demonstrate that the width of the metastable zone of rifamycin S becomes larger with decreasing cooling rate and increasing butyl acetate content. Furthermore, the crystallization process of rifamycin S was optimized on the basis of thermodynamic research. The results showed that when V butyl acetate:V mixed solvent was 0.04, the cooling rate was 0.1 K/min, the stirring rate was 150 rpm, the final crystallization temperature was 283.15 K, and the aging time was 8 h, the purity of rifamycin S crystals could reach 98.5%, and the crystalline yield was 89.6%. After crystallization optimization, the size of rifamycin S crystals increased, and the dissolution in water was improved.
RESUMO
BACKGROUND: This study investigated the predictive value of peripheral inflammatory indices, including neutrophil count, lymphocyte count, platelet count, neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR), in anastomotic leakage during elective esophageal surgery. METHODS: This retrospective study included all patients who underwent esophagectomy for esophageal squamous cell carcinoma from 2016 to 2020 in our institution. The peripheral blood inflammatory indices were obtained on preoperative days 1-7 (PRD 1-7), and postoperative days 1-3 (POD 1-3) and 4-7 (POD 4-7). Univariate, multivariate logistic, and receiver operating characteristic curve analyses were conducted to evaluate the diagnostic value of these peripheral blood inflammatory indices. RESULTS: A total of 198 patients were included in the study, and 25 (13%) patients experienced anastomotic leakage. Multivariate analyses identified diet, neutrophil count, and PLR on POD 1-3, and NLR on POD 4-7 as independent factors associated with anastomotic leakage. Using the receiver operating characteristic curve, the variable with the best area under curve was a neutrophil cutoff count of 4.1 [0.737; 95% CI: 0.639-0.835], with a sensitivity and specificity of 60.0% and 66.5%, respectively. This was followed by an NLR cutoff value of 9.5 on POD 4-7 (0.628; 95% CI: 0.505-0.752) and a cutoff PLR value of 220.1 on POD 1-3 (0.643; 95% CI: 0.536-0.750). Diet showed a poor result on the receiver operating characteristic curve analysis. CONCLUSIONS: Neutrophil count and PLR on POD 1-3 and NLR on POD 4-7 were shown to have predictive value for anastomotic leakage in elective esophageal surgery.
RESUMO
Fluorescence nanoparticles (FNs) are a type of nano-dots generated during baking process, and their safety on organism is unclear and little is known to their cytotoxicity. In this study, the FNs from instant coffee were purified and characterized. The FNs with an average size about 2.08 nm emitted bright blue fluorescence with lifetime about 2.74 ns. The element and functional groups were analyzed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, respectively. The results indicated that these FNs were internalized in lysosomes and induced apoptosis of normal rat kidney (NRK) and Caco-2 cells. While, the pan-caspase inhibitor, Z-VAD-FMK didn't decrease the rate of apoptosis and cell death of the FNs-treated NRK and Caco-2 cells. These internalized FNs enlarged lysosomes, decreased lysosomal enzyme degradation activity and increased lysosomal pH value. Partial co-localization of receptor-interacting serine-threonine kinase 3 (RIPK3) to lysosomes in FNs-treated cells was observed, and the amount of RIPK1 and RIPK3 increased after treatment with FNs. The results demonstrated that the FNs from instant coffee induced lysosomal membrane permeabilization and initiated necroptosis.