Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Infect Drug Resist ; 17: 4317-4325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39399885

RESUMO

Objective: Azvudine is used to treat patients with the coronavirus disease 2019 (COVID-19). This study evaluated the clinical efficacy of azvudine in hospitalized patients with different severities of COVID-19 because few studies have described this in patients with severe and non-severe COVID-19. Methods: This retrospective study included hospitalized patients with COVID-19 in Guizhou Provincial People's Hospital between December 2022 and January 2023. Azvudine-treated patients and controls were matched for sex, age, and disease severity at admission. Laboratory results and outcomes, including all-cause mortality, invasive mechanical ventilation, intensive care unit admission, and hospital stay length, were evaluated. Stratified analysis was used to explore the difference in the efficacy of azvudine in severe and non-severe COVID-19 patients. Results: No significant differences in all-cause mortality were observed between the 303 azvudine recipients and 303 matched controls. However, azvudine-treated patients had shorter hospital stays (8.34±4.79 vs 9.17±6.25 days, P=0.046) and higher lymphocyte improvement rates (21.5% vs 13.9%, P=0.019), with a more pronounced effect in patients with non-severe COVID-19 (length of hospital stay, 8.07±4.35 vs 10.00±6.29 days, P=0.001; lymphocyte improvement rate, 23.8% vs 12.8%, P=0.015). Conclusion: Azvudine treatment shortens hospital stay length and increases the rate of lymphocyte count improvement in patients with non-severe COVID-19, suggesting that azvudine may be a treatment option for these patients.

2.
Nat Commun ; 15(1): 8652, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39368981

RESUMO

The genetic analysis of potato is hampered by the complexity of tetrasomic inheritance. An ongoing effort aims to transform the clonally propagated tetraploid potato into a seed-propagated diploid crop, which would make genetic analyses much easier owing to disomic inheritance. Here, we construct and report the large-scale genetic and heterotic characteristics of a diploid F2 potato population derived from the cross of two highly homozygous inbred lines. We investigate 20,382 traits generated from multi-omics dataset and identify 25,770 quantitative trait loci (QTLs). Coupled with gene expression data, we construct a systems-genetics network for gene discovery in potatoes. Importantly, we explore the genetic basis of heterosis in this population, especially for yield and male fertility heterosis. We find that positive heterotic effects of yield-related QTLs and negative heterotic effects of metabolite QTLs (mQTLs) contribute to yield heterosis. Additionally, we identify a PME gene with a dominance heterotic effect that plays an important role in male fertility heterosis. This study provides genetic resources for the potato community and will facilitate the application of heterosis in diploid potato breeding.


Assuntos
Fertilidade , Vigor Híbrido , Locos de Características Quantitativas , Solanum tuberosum , Solanum tuberosum/genética , Fertilidade/genética , Vigor Híbrido/genética , Melhoramento Vegetal , Diploide , Fenótipo , Mapeamento Cromossômico , Genômica , Regulação da Expressão Gênica de Plantas , Multiômica
3.
J Econ Entomol ; 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39425904

RESUMO

The invasive fall armyworm (FAW), Spodoptera frugiperda, is a polyphagous pest that significantly threatens crops worldwide. FAW may undergo adaptation, enhancing its ability to infect specific plant hosts. However, there is limited knowledge on this topic. After 8 generations of constant rearing on peanut leaves, the performance and enzyme activities of FAW were investigated in this study. Compared to FAW fed on the peanut cultivars 'Fuhua 8' and 'Quanhonghua 1' for 2 generations, those grown on leaves for 5 to 8 generations had significantly shorter pre-adult development times and total preoviposition periods. Fecundity also increased significantly, resulting in an overall improvement in population fitness as measured by demographic parameters. However, the F2 generation of FAW fed on corn leaves outperformed the F8 generation of FAW fed on peanut leaves. In the F2 generation, the FAW peanut population exhibited 30-55% supernumerary larval molts, which decreased substantially in the F5 and F8 generations. Notably, supernumerary larval molts displayed pupation and emergence rates comparable to normal larvae, regardless of the peanut cultivar or rearing generation. The activities of lipase and acetylcholinesterase increased significantly from the F2 to F8 generations, showing substantial negative and positive correlations with larval development time and fecundity, respectively. In conclusion, FAW demonstrated inferior performance on peanut leaves compared to corn leaves, despite its performance was significantly improved after 5 to 8 generations of acclimation. These results suggest that corn will continue to be the primary target crop for FAW in China.

4.
Plant Physiol Biochem ; 215: 108982, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089046

RESUMO

Phosphate (P) and nitrogen (N) fertilization affect rice tillering, indicating that P- and N-regulated tiller growth has a crucial effect on grain yield. Cytokinins and strigolactones (SLs) promote and inhibit tiller bud outgrowth, respectively; however, the underlying mechanisms are unclear. In this study, tiller bud outgrowth and cytokinin fractions were evaluated in rice plants fertilized at different levels of P and N. Low phosphate or nitrogen (LP or LN) reduced rice tiller numbers and bud elongation, in line with low cytokinin levels in tiller buds and xylem sap as well as low TCSn:GUS expression, a sensitive cytokinin signal reporter, in the stem base. Furthermore, exogenous cytokinin (6-benzylaminopurin, 6-BA) administration restored bud length and TCSn:GUS activity in LP- and LN-treated plants to similar levels as control plants. The TCSn:GUS activity and tiller bud outgrowth were less affected by LP and LN supplies in SL-synthetic and SL-signaling mutants (d17 and d53) compared to LP- and LN-treated wild-type (WT) plants, indicating that SL modulate tiller bud elongation under LP and LN supplies by reducing the cytokinin levels in tiller buds. OsCKX9 (a cytokinin catabolism gene) transcription in buds and roots was induced by LP, LN supplies and by adding the SL analog GR24. A reduced response of cytokinin fractions to LP and LN supplies was observed in tiller buds and xylem sap of the d53 mutant compared to WT plants. These results suggest that cytokinin catabolism and transport are involved in SL-modulated rice tillering fueled by P and N fertilization.


Assuntos
Citocininas , Lactonas , Nitrogênio , Oryza , Fosfatos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/efeitos dos fármacos , Citocininas/metabolismo , Nitrogênio/metabolismo , Lactonas/metabolismo , Lactonas/farmacologia , Fosfatos/metabolismo , Transporte Biológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo
5.
Protein Expr Purif ; 223: 106561, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39094812

RESUMO

Xylanase plays the most important role in catalyzing xylan to xylose moieties. GH11 xylanases have been widely used in many fields, but most GH11 xylanases are mesophilic enzymes. To improve the catalytic activity and thermostability of Aspergillus niger xylanase (Xyn-WT), we predicted potential key mutation sites of Xyn-WT through multiple computer-aided enzyme engineering strategies. We introduce a simple and economical Ni affinity chromatography purification method to obtain high-purity xylanase and its mutants. Ten mutants (Xyn-A, Xyn-B, Xyn-C, E45T, Q93R, E45T/Q93R, A161P, Xyn-D, Xyn-E, Xyn-F) were identified. Among the ten mutants, four (Xyn-A, Xyn-C, A161P, Xyn-F) presented improved thermal stability and activity, with Xyn-F(A161P/E45T/Q93R) being the most thermally stable and active. Compared with Xyn-WT, after heat treatment at 55 °C and 60 °C for 10 min, the remaining enzyme activity of Xyn-F was 12 and 6 times greater than that of Xyn-WT, respectively, and Xyn-F was approximately 1.5 times greater than Xyn-WT when not heat treated. The pH adaptation of Xyn-F was also significantly enhanced. In summary, an improved catalytic activity and thermostability of the design variant Xyn-F has been reported.


Assuntos
Aspergillus niger , Endo-1,4-beta-Xilanases , Estabilidade Enzimática , Aspergillus niger/enzimologia , Aspergillus niger/genética , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/isolamento & purificação , Engenharia de Proteínas/métodos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Temperatura Alta , Desenho Assistido por Computador
6.
Quant Imaging Med Surg ; 14(8): 5571-5590, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39144020

RESUMO

Background: Low-dose computed tomography (LDCT) is a diagnostic imaging technique designed to minimize radiation exposure to the patient. However, this reduction in radiation may compromise computed tomography (CT) image quality, adversely impacting clinical diagnoses. Various advanced LDCT methods have emerged to mitigate this challenge, relying on well-matched LDCT and normal-dose CT (NDCT) image pairs for training. Nevertheless, these methods often face difficulties in distinguishing image details from nonuniformly distributed noise, limiting their denoising efficacy. Additionally, acquiring suitably paired datasets in the medical domain poses challenges, further constraining their applicability. Hence, the objective of this study was to develop an innovative denoising framework for LDCT images employing unpaired data. Methods: In this paper, we propose a LDCT denoising network (DNCNN) that alleviates the need for aligning LDCT and NDCT images. Our approach employs generative adversarial networks (GANs) to learn and model the noise present in LDCT images, establishing a mapping from the pseudo-LDCT to the actual NDCT domain without the need for paired CT images. Results: Within the domain of weakly supervised methods, our proposed model exhibited superior objective metrics on the simulated dataset when compared to CycleGAN and selective kernel-based cycle-consistent GAN (SKFCycleGAN): the peak signal-to-noise ratio (PSNR) was 43.9441, the structural similarity index measure (SSIM) was 0.9660, and the visual information fidelity (VIF) was 0.7707. In the clinical dataset, we conducted a visual effect analysis by observing various tissues through different observation windows. Our proposed method achieved a no-reference structural sharpness (NRSS) value of 0.6171, which was closest to that of the NDCT images (NRSS =0.6049), demonstrating its superiority over other denoising techniques in preserving details, maintaining structural integrity, and enhancing edge contrast. Conclusions: Through extensive experiments on both simulated and clinical datasets, we demonstrated the superior efficacy of our proposed method in terms of denoising quality and quantity. Our method exhibits superiority over both supervised techniques, including block-matching and 3D filtering (BM3D), residual encoder-decoder convolutional neural network (RED-CNN), and Wasserstein generative adversarial network-VGG (WGAN-VGG), and over weakly supervised approaches, including CycleGAN and SKFCycleGAN.

7.
Water Res ; 259: 121835, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810345

RESUMO

Simultaneous removal of heavy metals and organic contaminants remains a substantial challenge in the electro-Fenton (EF) system. Herein, we propose a facile and sustainable "iron-free" EF system capable of simultaneously removing hexavalent chromium (Cr (VI)) and para-chlorophenol (4-CP). The system comprises a nitrogen-doped and carbon-deficient porous carbon (dual-site NPC-D) cathode coupled with a MoS2 nanoarray promoter (MoS2 NA). The NPC-D/MoS2 NA system exhibits exceptional synergistic electrocatalytic activity, with removal rates for Cr (VI) and 4-CP that are 20.3 and 4.4 times faster, respectively, compared to the NPC-D system. Mechanistic studies show that the dual-site structure of NPC-D cathode favors the two-electron oxygen reduction pathway with a selectivity of 81 %. Furthermore, an electric field-driven uncoordinated Mo valence state conversion of MoS2 NA enchances the generation of dynamic singlet oxygen and hydroxyl radicals. Notably, this system shows outstanding recyclability, resilience in real wastewater, and sustainability during a 3 L scale-up operation, while effectively mitigating toxicity. Overall, this study presents an effective approach for treating multiple-component wastewater and highlights the importance of structure-activity correlation in synergistic electrocatalysis.


Assuntos
Carbono , Cromo , Eletrodos , Molibdênio , Poluentes Químicos da Água , Molibdênio/química , Cromo/química , Carbono/química , Poluentes Químicos da Água/química , Porosidade , Ferro/química , Peróxido de Hidrogênio/química , Oxirredução , Águas Residuárias/química
8.
Hortic Res ; 11(4): uhae103, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38689698

RESUMO

Prunus zhengheensis, an extremely rare population of apricots, originated in warm South-East China and is an excellent material for genetic breeding. However, most apricots and two related species (P. sibirica, P. mandshurica) are found in the cold northern regions in China and the mechanism of their distribution is still unclear. In addition, the classification status of P. zhengheensis is controversial. Thus, we generated a high-quality haplotype-resolved genome for P. zhengheensis, exploring key genetic variations in its adaptation and the causes of phylogenetic incongruence. We found extensive phylogenetic discordances between the nuclear and organelle phylogenies of P. zhengheensis, which could be explained by incomplete lineage sorting. A 242.22-Mb pan-genome of the Armeniaca section was developed with 13 chromosomal genomes. Importantly, we identified a 566-bp insertion in the promoter of the HSFA1d gene in apricot and showed that the activity of the HSFA1d promoter increased under low temperatures. In addition, HSFA1d overexpression in Arabidopsis thaliana indicated that HSFA1d positively regulated plant growth under chilling. Therefore, we hypothesized that the insertion in the promoter of HSFA1d in apricot improved its low-temperature adaptation, allowing it to thrive in relatively cold locations. The findings help explain the weather adaptability of Armeniaca plants.

9.
Sci Total Environ ; 927: 172300, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593873

RESUMO

The decomposition of ammonia-N to environmental-friendly N2 remains a fundamental problem for water treatment. We proposed a way to selectively and efficiently oxidize ammonia to N2 through an integrated photoeletrocatalysis­chlorine reactions (PECCl) system based on a bifunctional TiO2 nanotube photoanode. The ·OH and HClO can be simultaneously generated on the TiO2 nanotube photoanode in this system, which can in situ form ClO· for efficient ammonia removal. Compared with electrochemical­chlorine (EC-Cl), photocatalysis­chlorine (PC-Cl) and photoelectrocatalysis (PEC) systems, the PEC-Cl system exhibited much higher electrocatalytic activity due to the synergetic effect of photoelectrocatalyst and electrocatalyst in bifunctional TiO2 nanotube electrode. The removal efficiency of ammonia-N and total-N reached 100.0 % and 93.3 % at 0.3 V (vs Ag/AgCl) in the PEC-Cl system. Moreover, the system was efficient under various pH conditions. The reactions between ClO-/ClO· and the N-containing intermediates contributed to the high performance of the system, which expanded the reactions from the electrode surface to the electrolyte. Furthermore, radical scavenging and free chlorine determination experiments confirmed that ClO· and free chlorine were the main active species that enabled the ammonia oxidation. This study presents new understanding on the role of active species for ammonia removal in wastewater.

10.
Front Pharmacol ; 15: 1335374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510653

RESUMO

Background: Previous studies have documented important roles for microRNA-147 (miR-147) in inflammation, radiation-induced injury, cancer, and a range of other diseases. Murine lungs exhibit high levels of miRNA, mRNA, and lncRNA expression. However, very little research to date has focused on the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) networks associated with miR-147, and the regulation of lncRNAs and miRNAs in this setting remains poorly understood. Methods: After establishing a miR-147-/- model mouse, samples of lung tissue were harvested for RNA-sequencing, and differentially expressed lncRNAs, miRNAs, and mRNAs were identified. The miRNA targets of these lncRNAs and the identified miRNAs were first overlapped to facilitate the prediction of target mRNAs, with analyses then examining the overlap between these targets and mRNAs that were differentially expressed. Then, these target mRNAs were subjected to pathway enrichment analyses. These results were ultimately used to establish a miR-147-related ceRNA network. Results: Relative to wild-type mice, the lungs of miR-147-/- mice exhibited 91, 43, and 71 significantly upregulated lncRNAs, miRNAs, and mRNAs, respectively, together with 114, 31, and 156 that were significantly downregulated. The lncRNA-miRNA-mRNA network established based on these results led to the identification of Kcnh6 as a differentially expressed hub gene candidate and enabled the identification of a range of regulatory relationships. KEGG pathway enrichment showed that the mRNA targets of differentially expressed lncRNAs and miRNAs in the mice were associated with tumor-related signaling, endometrial cancer, bladder cancer, and ErbB signaling. Conclusion: These results suggest that the identified ceRNA network in miR-147-/- mice shapes tumor-associated signaling activity, with miR-147 potentially regulating various lncRNAs and miRNAs through Kcnh6, ultimately influencing tumorigenesis. Future studies of the lncRNA, miRNA, and mRNA regulatory targets shown to be associated with miR-147 in the present study may ultimately lead to the identification of novel clinically relevant targets through which miR-147 shapes the pathogenesis of cancer and other diseases.

11.
Food Chem ; 443: 138507, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277932

RESUMO

Rapid, accurate, and sensitive analytical methods for the detection of food fraud are now an urgent requirement in the global food industry to ensure food quality. In response to this demand, a centrifugal integrated purification-CRISPR array for meat adulteration (CIPAM) was established. In detail, CIPAM system combines microneedles for DNA extraction and RAA-CRISPR/Cas12a integrated into a centrifugal microfluidic chip for the detection of meat adulteration. The RAA-CRISPR/Cas12a reaction reagents were pre-embedded into the different reaction chambers on the microfluidic chip to achieve the streamline of operations, markedly simplifying the detection process. The whole reaction was completed within 30 min with a detection limit of 0.1 % (w/w) in pig, chicken, duck, and lamb products. Referring to the results of the standard method, CIPAM system achieved 100 % accuracy. The automatic multiplex detection process implemented in the developed CIPAM system met the needs of food regulatory authorities.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Carne , Animais , Ovinos , Suínos/genética , Carne/análise , Qualidade dos Alimentos , Técnicas de Amplificação de Ácido Nucleico/métodos
12.
Bioorg Med Chem ; 96: 117354, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944414

RESUMO

Rheumatoid arthritis (RA) is a chronically systemic autoimmune disorder, which is related with various cellular signal pathways. Both BTK (Bruton's Tyrosine Kinase) and JAK3 (Janus Kinase 3) play important roles in the pathogenesis of rheumatoid arthritis. Herein, we reported the discovery of dual BTK/JAK3 inhibitors through bioisosterism and computer-aided drug design based on the structure of BTK inhibitor ibrutinib. We reported the discovery of dual BTK/JAK3 inhibitors which are based on the structure of BTK inhibitor ibrutinib via the method of bioisosterism and computer-aided drug design) Most of the target compounds exhibited moderate to strong inhibitory activities against BTK and JAK3. Among them, compound XL-12 stood out as the most promising candidate targeting BTK and JAK3 with potent inhibitory activities (IC50 = 2.0 nM and IC50 = 14.0 nM respectively). In the in vivo studies, compound XL-12 (40 mg/kg) exhibited more potent antiarthritic activity than ibrutinib (10 mg/kg) in adjuvant arthritis (AA) rat model. Furthermore, compound XL-12 (LD50 > 1600 mg/kg) exerted improved safety compared with ibrutinib (LD50 = 750 mg/kg). These results indicated that compound XL-12, the dual BTK/JAK3 inhibitor, might be a potent drug candidate for the treatment of RA.


Assuntos
Artrite Reumatoide , Inibidores de Janus Quinases , Ratos , Animais , Tirosina Quinase da Agamaglobulinemia , Inibidores de Janus Quinases/uso terapêutico , Janus Quinase 3 , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo
13.
Eur J Oncol Nurs ; 67: 102458, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951073

RESUMO

PURPOSE: Irrespective of the development of acupuncture-based interventions, clinical evidence regarding their efficacy remains controversial owing to issues with the study design and an unclear risk of bias. This study aimed to evaluate the efficacy of auricular acupuncture in managing taste alterations in patients with cancer undergoing platinum-based chemotherapy. METHODS: We conducted a pilot randomized controlled trial involving 73 patients randomly assigned to an auricular acupuncture or a control group. The primary outcome was the severity of chemotherapy-induced taste alterations, and the secondary outcomes included quality of life and negative emotions of the patients. RESULTS: A total of 49 participants completed the study. Compared to the control group, patients in the auricular acupuncture group showed significant reductions in discomfort, general taste alterations, and total scores on the Chemotherapy-induced Taste Alteration Scale (all p < 0.05). Furthermore, we observed significant improvements in quality of life, including physical function (p = 0.007), role function (p = 0.006), emotional function (p = 0.016), nausea and vomiting (p = 0.021), appetite loss (p = 0.046), and significant improvements in anxiety and depression (p < 0.01). CONCLUSIONS: Our findings suggest that auricular acupuncture may be a beneficial intervention for managing chemotherapy-induced taste alterations in patients with cancer receiving platinum-based chemotherapy. It may also contribute to improvements in quality of life and negative emotions. However, these results are preliminary, and further evaluation with larger randomized controlled trials is necessary.


Assuntos
Acupuntura Auricular , Antineoplásicos , Neoplasias , Humanos , Paladar , Qualidade de Vida , Projetos Piloto , Disgeusia/induzido quimicamente , Neoplasias/tratamento farmacológico , Antineoplásicos/efeitos adversos , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
14.
Biotechnol Lett ; 45(10): 1249-1263, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37535135

RESUMO

The advent of plastics has led to significant advances for humans, although the accompanying pollution has also been a source of concern for countries globally. Consequently, a biological method to effectively degrade polyethylene terephthalate (PET) has been an area of significant scientific interest. Following the report of the highly efficient PET hydrolase from the bacterium Ideonella sakaiensis strain 201-F6 (i.e., IsPETase) in 2016, its structure has been extensively studied, showing that it belongs to the type II PETase group. Unlike type I PETases that include most known cutinases, structural investigations of type II PETases have only been conducted since 2017. Type II PETases are further divided into type IIa and IIb enzymes. Moreover, even less research has been conducted on type IIa plastic-degrading enzymes. Here, we present a review of recent studies of the structure and mechanism of type II PETases, using the known structure of the type IIa PETase PE-H from the marine bacterium Pseudomonas aestusnigri in addition to the type IIb enzyme IsPETase as representatives. These studies have provided new insights into the structural features of type II PETases that exhibit PET catalytic activity. In addition, recent studies investigating the rational design of IsPETases are reviewed and summarized alongside a discussion of controversies surrounding PETase investigations.


Assuntos
Hidrolases , Polietilenotereftalatos , Humanos , Hidrolases/metabolismo , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo
15.
J Inflamm Res ; 16: 2387-2399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292381

RESUMO

Background: Radiation-induced lung injury (RILI) is a critical factor that leads to pulmonary fibrosis and other diseases. LncRNAs and miRNAs contribute to normal tissue damage caused by ionizing radiation. Troxerutin offers protection against radiation; however, its underlying mechanism remains largely undetermined. Methods: We established a model of RILI in mice pretreated with troxerutin. The lung tissue was extracted for RNA sequencing, and an RNA library was constructed. Next, we estimated the target miRNAs of differentially expressed (DE) lncRNAs, and the target mRNAs of DE miRNAs. Then, functional annotations of these target mRNAs were performed using GO and KEGG. Results: Compared to the control group, 150 lncRNA, 43 miRNA, and 184 mRNA were significantly up-regulated, whereas, 189 lncRNA, 15 miRNA, and 146 mRNA were markedly down-regulated following troxerutin pretreatment. Our results revealed that the Wnt, cAMP, and tumor-related signaling pathways played an essential role in RILI prevention via troxerutin using lncRNA-miRNA-mRNA network. Conclusion: These evidences revealed that the abnormal regulation of RNA potentially leads to pulmonary fibrosis. Therefore, targeting lncRNA and miRNA, along with a closer examination of competitive endogenous RNA (ceRNA) networks are of great significance to the identification of troxerutin targets that can protect against RILI.

16.
Nucleic Acids Res ; 51(11): e66, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37207331

RESUMO

Aptamers are ligand-binding RNA or DNA molecules and have been widely examined as biosensors, diagnostic tools, and therapeutic agents. The application of aptamers as biosensors commonly requires an expression platform to produce a signal to report the aptamer-ligand binding event. Traditionally, aptamer selection and expression platform integration are two independent steps and the aptamer selection requires the immobilization of either the aptamer or the ligand. These drawbacks can be easily overcome through the selection of allosteric DNAzymes (aptazymes). Herein, we used the technique of Expression-SELEX developed in our laboratory to select for aptazymes that can be specifically activated by low concentrations of l-phenylalanine. We chose a previous DNA-cleaving DNAzyme known as II-R1 as the expression platform for its low cleavage rate and used stringent selection conditions to drive the selection of high-performance aptazyme candidates. Three aptazymes were chosen for detailed characterization and these DNAzymes were found to exhibit a dissociation constant for l-phenylalanine as low as 4.8 µM, a catalytic rate constant improvement as high as 20 000-fold in the presence of l-phenylalanine, and the ability to discriminate against closely related l-phenylalanine analogs including d-phenylalanine. This work has established the Expression-SELEX as an effective SELEX method to enrich high-quality ligand-responsive aptazymes.


Assuntos
Aptâmeros de Nucleotídeos , DNA Catalítico , Fenilalanina , Aptâmeros de Nucleotídeos/química , DNA/química , DNA Catalítico/genética , DNA Catalítico/metabolismo , Ligantes , Fenilalanina/análise , Técnica de Seleção de Aptâmeros/métodos
17.
Cell ; 186(11): 2313-2328.e15, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37146612

RESUMO

Hybrid potato breeding will transform the crop from a clonally propagated tetraploid to a seed-reproducing diploid. Historical accumulation of deleterious mutations in potato genomes has hindered the development of elite inbred lines and hybrids. Utilizing a whole-genome phylogeny of 92 Solanaceae and its sister clade species, we employ an evolutionary strategy to identify deleterious mutations. The deep phylogeny reveals the genome-wide landscape of highly constrained sites, comprising ∼2.4% of the genome. Based on a diploid potato diversity panel, we infer 367,499 deleterious variants, of which 50% occur at non-coding and 15% at synonymous sites. Counterintuitively, diploid lines with relatively high homozygous deleterious burden can be better starting material for inbred-line development, despite showing less vigorous growth. Inclusion of inferred deleterious mutations increases genomic-prediction accuracy for yield by 24.7%. Our study generates insights into the genome-wide incidence and properties of deleterious mutations and their far-reaching consequences for breeding.


Assuntos
Melhoramento Vegetal , Solanum tuberosum , Diploide , Mutação , Filogenia , Solanum tuberosum/genética
18.
BMC Pulm Med ; 23(1): 142, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37106322

RESUMO

BACKGROUND: Diabetes mellitus is a major cause of high mortality and poor prognosis in patients with pulmonary infections. However, limited data on the application of metagenomic next-generation sequencing (mNGS) are available for diabetic patients. This study aimed to evaluate the diagnostic performance of mNGS in diabetic patients with pulmonary infections. METHODS: We retrospectively reviewed 184 hospitalized patients with pulmonary infections at Guizhou Provincial People's Hospital between January 2020 to October 2021. All patients were subjected to both mNGS analysis of bronchoalveolar lavage fluid (BALF) and conventional testing. Positive rate by mNGS and the consistency between mNGS and conventional testing results were evaluated for diabetic and non-diabetic patients. RESULTS: A total of 184 patients with pulmonary infections were enrolled, including 43 diabetic patients and 141 non-diabetic patients. For diabetic patients, the microbial positive rate by mNGS was significantly higher than that detected by conventional testing methods, primarily driven by bacterial detection (microbes: 95.3% vs. 67.4%, P = 0.001; bacteria: 72.1% vs. 37.2%, P = 0.001). mNGS and traditional tests had similar positive rates with regard to fungal and viral detection in diabetic patients. Klebsiella pneumoniae was the most common pathogen identified by mNGS in patients with diabetes. Moreover, mNGS identified pathogens in 92.9% (13/14) of diabetic patients who were reported negative by conventional testing. No significant difference was found in the consistency of the two tests between diabetic and non-diabetic groups. CONCLUSIONS: mNGS is superior to conventional microbiological tests for bacterial detection in diabetic patients with pulmonary infections. mNGS is a valuable tool for etiological diagnosis of pulmonary infections in diabetic patients.


Assuntos
Diabetes Mellitus , Pneumonia , Humanos , Estudos Retrospectivos , Sequenciamento de Nucleotídeos em Larga Escala , Líquido da Lavagem Broncoalveolar , Klebsiella pneumoniae/genética , Sensibilidade e Especificidade
19.
Front Pharmacol ; 14: 1118217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937841

RESUMO

Renal cell carcinoma (RCC) is a common urologic disease. Currently, surgery is the primary treatment for renal cancer; immunotherapy is not as effective a treatment strategy as expected. Hence, understanding the mechanism in the tumor immune microenvironment (TME) and exploring novel immunotherapeutic targets are considered important. Recent studies have demonstrated that autophagy could affect the immune environment of renal cell carcinoma and induce proliferation and apoptosis of cancer cells. By comparing lysosomal genes and regulating autophagy genes, we identified the LAPTM4B gene to be related to RCC autophagy. By analyzing the TCGA-KIRC cohort using bioinformatics, we found M2 macrophages associated with tumor metastasis to be significantly increased in the immune microenvironment of patients with high expression of LAPTM4B. GO/KEGG/GSEA/GSVA results showed significant differences in tumor autophagy- and metastasis-related pathways. Single-cell sequencing was used to compare the expression of LAPTM4B in different cell types and obtain the differences in lysosomal and autophagy pathway activities in different ccRCC cells. Subsequently, we confirmed the differential expression of LAPTM4B in renal cell carcinoma of different Fuhrman grades using western blotting. Downregulation of LAPTM4B expression significantly reduced the proliferation of renal cell carcinoma cells and promoted cell apoptosis through cell experiments. Overall, our study demonstrated that the autophagy-related gene LAPTM4B plays a critical role in the TME of RCC, and suggested that LAPTM4B is a potential therapeutic target for RCC immunotherapy.

20.
Int Immunopharmacol ; 117: 109896, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36812675

RESUMO

BACKGROUND: Prior evidence has demonstrated that miR-147 can regulate cellular proliferation, migration, apoptotic death, inflammatory responses, and the replication of viruses through its interactions with specific mRNA targets. LncRNA-miRNA-mRNA interactions are often found in various biological processes. No studies have documented lncRNA-miRNA-mRNA regulatory interactions in miR-147-/- mice. METHODS: Thymus tissue samples from miR-147-/- mice were systematically analyzed to detect patterns of lncRNA, miRNA, and mRNA dysregulation in the absence of this biologically important miRNA. Briefly, RNA-sequencing was used to analyze samples of thymus tissue from wild-type (WT) and miR-147-/- mice. Radiation damage models of miR-147-/- mice were prepared and prophylactic intervention with the drug trt was performed. The validation of miR-47, PDPK1,AKT and JNK were carried out by qRT-PCR, western blot and fluorescence in situ hybridization. Apoptosis was detected by Hoechst staining, and histopathological changes were detected by HE staining. RESULTS: We showed the identification of 235 mRNAs, 63 lncRNAs, and 14 miRNAs that were significantly upregulated in miR-147-/- mice as compared to WT controls, as well as 267 mRNAs, 66 lncRNAs and 12 miRNAs exhibiting significant downregulation. Predictive analyses of the miRNAs targeted by dysregulated lncRNAs and their associated mRNAs were further performed, highlighting the dysregulation of pathways including the Wnt signaling pathway, Thyroid cancer, Endometrial cancer (include PI3K/AKT) and Acute myeloid leukemia pathway(include PI3K/AKT) pathways. Troxerutin (TRT) upregulated PDPK1 via targeting miR-147 to promote AKT activation and inhibit JNK activation in the lungs of mice in radioprotection. CONCLUSION: Together, these results highlight the potentially important role of miR-147 as a key regulator of complex lncRNA-miRNA-mRNA interacting networks. Further research focusing on PI3K/AKT pathways in miR-147-/- mice in radioprotection will thus benefit current knowledge of miR-147 while also informing efforts to improve radioprotection.


Assuntos
MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/genética , Hibridização in Situ Fluorescente , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA