Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Mitochondrial DNA B Resour ; 9(10): 1341-1344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39372910

RESUMO

The complete mitochondrial genome of Saldoida armata (Heteroptera: Saldidae) is 16,049 bp in length, comprising 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and a control region. All the PCGs are initially encoded by ATN, TTG or GTG, and terminated coding with TAA or a single T. With the exception of trnS(AGN), all tRNAs exhibit a typical cloverleaf secondary structure. Phylogenetic analysis reveals the sister relationship of S. armata with other Saldidae members. The complete mitogenome of S. armata will provide useful genetic information for species identification, phylogenetic analysis and conservation of this species.

2.
Sci Data ; 11(1): 1169, 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39461974

RESUMO

Cyamophila willieti (Hemiptera: Psyllidae) is a significant pest that adversely affects the growth of Styphnolobium japonicum and its variant, Styphnolobium japonicum f. pendula. Despite its impact, research on this species remains limited. In this study, we successfully assembled a chromosome-level genome for Cyamophila willieti using a comprehensive approach that integrated Illumina sequencing, PacBio sequencing, and Hi-C technology. The genome size was determined to be 361.61 Mb, with a scaffold N50 length of 28.90 Mb. Additionally, the genome was mapped to 13 chromosomes (N = 12 A + X), and a total of 15,841 genes were predicted, with 90.38% of them functionally annotated. In summary, the high-quality genome of Cyamophila willieti provides valuable data to support further research, including pest management strategies.


Assuntos
Genoma de Inseto , Hemípteros , Animais , Hemípteros/genética , Cromossomos de Insetos , Tamanho do Genoma
3.
J Adv Res ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357646

RESUMO

INTRODUCTION: Invasive species pose a major threat to global biodiversity and agricultural productivity, yet the genomic mechanisms driving their rapid expansion into new habitats are not fully understood. The fall armyworm, Spodoptera frugiperda, originally from the Americas, has expanded its reach across the Old World, causing substantial reduction in crop yield. Although the hybridization between two genetically distinct strains has been well-documented, the role of such hybridization in enhancing the species' invasive capabilities remains largely unexplored. OBJECTIVES: This study aims to investigate the contributions of hybridization and natural selection to the rapid invasion of the fall armyworm. METHODS: We analyzed the whole-genome resequencing data from 432 individuals spanning its global distribution. We identified the genomic signatures of selection associated with invasion and explored their linkage with the Tpi gene indicating strain differentiation. Furthermore, we detected signatures of balancing selection in native populations for candidate genes that underwent selective sweeps during the invasion process. RESULTS: Our analysis revealed pronounced genomic differentiation between native and invasive populations. Invasive populations displayed a uniform genomic structure distinctly different from that of native populations, indicating hybridization between the strains during invasion. This hybridization likely contributes to maintaining high genetic diversity in invasive regions, which is crucial for survival and adaptation. Additionally, polymorphisms on genes under selection during invasion were possibly preserved through balancing selection in their native environments. CONCLUSION: Our findings reveal the genomic basis of the fall armyworm's successful invasion and rapid adaptation to new environments, highlighting the important role of hybridization in the dynamics of invasive species.

4.
Org Lett ; 26(39): 8272-8277, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39311767

RESUMO

Keratan sulfate (KS) is a highly complex proteoglycan that has a poly-LacNAc chain that can be modified by diverse patterns of sulfate esters at C-6 positions of galactoside (Gal) and N-acetylglucosamine (GlcNAc) residues. Here, a chemo-enzymatic methodology is described that can control the pattern of sulfation at Gal using UDP-Gal-aldehyde as a donor for poly-LacNAc assembly to temporarily block specific sites from sulfation by galactose 6-sulfotransferase (CHST1).


Assuntos
Sulfato de Queratano , Oligossacarídeos , Oligossacarídeos/química , Oligossacarídeos/síntese química , Sulfato de Queratano/química , Sulfato de Queratano/metabolismo , Galactosídeos/química , Galactosídeos/síntese química , Galactosídeos/metabolismo , Estrutura Molecular , Sulfotransferases/metabolismo
5.
Sci Data ; 11(1): 1016, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294192

RESUMO

Heteroptera (the true bugs), one of the most diverse lineages of insects, diversified in feeding strategies and living habitats, and thus become an ideal lineage for studies on adaptive evolution. Chinese water scorpion Ranatra chinensis (Heteroptera: Nepidae) is a predaceous bug living in lentic water systems, representing an ideal model for studying habitat transition and adaptation to water environment. However, genetic studies on this water bug remain limited. Here, we obtained a chromosome-level genome of R. chinensis using PacBio HiFi long reads and Hi-C sequencing reads. The total assembly size of genome is 867.89 Mb, with a scaffold N50 length of 26.48 Mb and the GC content of 39.50%. All contigs were assembled into 23 pseudo-chromosomes (N = 19 A + X1X2X3X4), and we predicted 18,424 protein-coding genes in this genome. This study will provide valuable genomic resources for future studies on the biology, water adaptation, and genome evolution of water bugs.


Assuntos
Genoma de Inseto , Heterópteros , Animais , Heterópteros/genética , Cromossomos de Insetos
6.
Ann Med ; 56(1): 2409342, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39348274

RESUMO

OBJECTIVE: The objective of this study was to thoroughly investigate the clinical value of triglyceride glucose-body mass index (TyG-BMI) in patients diagnosed with non-alcoholic fatty liver disease (NAFLD). Specifically, we aimed to determine its association with non-alcoholic steatohepatitis (NASH) and the progression of liver fibrosis. METHODS: The study included 393 patients diagnosed with NAFLD after liver biopsy. The patients were divided into two distinct cohorts: a training cohort (N = 320) and a validation cohort (N = 73). The training cohort was further divided into four groups based on TyG-BMI quartiles. The clinical characteristics of the patients in each group were compared in detail, and the association between TyG-BMI and NASH, NAFLD Activity Score (NAS) ≥ 4, at-risk NASH, significant fibrosis, advanced fibrosis, and cirrhosis was analyzed using multiple models. Additionally, we generated receiver operating characteristic (ROC) curves to evaluate the predictive ability of TyG-BMI for NASH and fibrosis staging in patients with NAFLD. RESULTS: Patients with higher TyG-BMI values had a significantly higher prevalence of NASH, NAS ≥ 4, at-risk NASH, significant fibrosis, advanced fibrosis, and cirrhosis (all p < .05). TyG-BMI was an independent predictor of these diseases in both unadjusted and adjusted models (all p < .05). ROC curve analysis further revealed the excellent performance of TyG-BMI in predicting NASH, NAS ≥ 4, at-risk NASH, significant fibrosis, advanced fibrosis, and cirrhosis. The validation cohort yielded analogous results. Furthermore, we constructed three multivariate models of TyG-BMI in conjunction with elastography metrics, which demonstrated elevated diagnostic AUC values of 0.782, 0.792, 0.794, 0.785, 0.834, and 0.845, respectively. CONCLUSION: This study confirms a significant association between insulin resistance and NAFLD, including at-risk NASH and fibrosis staging, as assessed using the TyG-BMI index. TyG-BMI and its associated multivariate models can be valuable noninvasive indicators for NAFLD diagnosis, risk stratification, and disease course monitoring.


Assuntos
Índice de Massa Corporal , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Triglicerídeos , Humanos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Feminino , Masculino , Pessoa de Meia-Idade , Triglicerídeos/sangue , Cirrose Hepática/sangue , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Adulto , Glicemia/metabolismo , Glicemia/análise , Curva ROC , Índice de Gravidade de Doença , Fígado/patologia , Progressão da Doença , Biópsia , Estudos Retrospectivos
7.
Int J Biol Sci ; 20(12): 4853-4871, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309431

RESUMO

Background: By regulating the functions of multiple RNAs, 5-methylcytosine (m5C) RNA methylation, particularly mediated by NOP2, is involved in tumorigenesis and developments. However, the specific functions and potential mechanisms of m5C, especially involving NOP2, in clear-cell renal cell carcinoma (ccRCC), remain unclear. Methods: NOP2 expression in cell lines and patient tissues was detected using western blotting, quantitative real-time polymerase chain reaction (RT-qPCR), and immunohistochemistry. The biological effects of NOP2 on ccRCC cells were investigated through a series of in vitro and in vivo experiments. To explore the potential regulatory mechanisms by which NOP2 affects ccRCC progression, m5C bisulfite sequencing, RNA-sequencing, RNA immunoprecipitation and methylated RNA immunoprecipitation (RIP/MeRIP) RT-qPCR assay, luciferase reporter assay, RNA stability assay, and bioinformatic analysis were performed. Results: NOP2 expression was significantly upregulated in ccRCC tissues and was associated with poor prognosis. Moreover, loss-of-function and gain-of-function assays demonstrated that NOP2 altered ccRCC cell proliferation, migration, and invasion. Mechanistically, NOP2 stimulated m5C modification of apolipoprotein L1 (APOL1) mRNA, and m5C reader YBX1 stabilized APOL1 mRNA through recognizing and binding to m5C site in the 3'-untranslated regions. Silencing APOL1 expression inhibited ccRCC cell proliferation in vitro and tumor formation in vivo. Furthermore, NOP2/APOL1 affected ccRCC progression via the PI3K-Akt signaling pathway. Conclusion: NOP2 functions as an oncogene in ccRCC by promoting tumor progression through the m5C-dependent stabilization of APOL1, which in turn regulates the PI3K-Akt signaling pathway, suggesting a potential therapeutic target for ccRCC.


Assuntos
Apolipoproteína L1 , Carcinoma de Células Renais , Neoplasias Renais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro , Humanos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Linhagem Celular Tumoral , Apolipoproteína L1/metabolismo , Apolipoproteína L1/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Camundongos , 5-Metilcitosina/metabolismo , Animais , Proliferação de Células/genética , Camundongos Nus , Masculino , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Movimento Celular/genética
8.
Sci Total Environ ; 951: 175807, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39197758

RESUMO

Water-soluble metals exert a significant influence on human and ecosystem health. In this study, a comprehensive investigation was undertaken to elucidate the solubilities of metals in PM2.5 and potential influencing factors during the dry season of 2019-2020 in urban Guangzhou, South China. The observed average solubility was <20 % for Al, Fe, Sn, and Ti; 20-40 % for V, Cr, Sb, Pb, and Ni; 40-60 % for Ba and Cu; and 60-80 % for Zn, As, Se, Cd, and Mn. Metals (Al, Ti, and Fe) originated from crustal sources (e.g., soil dust) have much lower solubilities than those (Mn, Zn, As, Se, Cd, and Ba) from fossil fuel combustion sources (e.g., traffic emission, coal combustion), suggesting the dominant role the metal sources played on solubility. Enhanced solubilities of Cu, As, Se, Cd, Sn, Sb, and Pb were associated with aerosol acidity, while those of V, Cr, Mn, Ni, Zn, and Ba were linked to organic acid complexation. For the three crustal metals, the solubilities of Al and Ti primarily depended on aerosol acidity, whereas the solubility of Fe depended on both aerosol acidity under pH < 2 conditions and organic acid complexation under pH > 2 conditions. These findings underscore the primary influence of inherent properties of the metals on their solubility and reveal the varying impacts of atmospheric physicochemical processes, with changes in their solubilities being <10 % for Cd, Sn, Sb, and Pb, 10-20 % for Cu, Cr, Mn, Ni, and Ba, and 20-30 % for As, Se, and Zn.

9.
iScience ; 27(8): 110411, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39108731

RESUMO

Genetic basis underlying the biodiversity and phenotypic plasticity are fascinating questions in evolutionary biology. Such molecular diversity can be achieved at multi-omics levels. Here, we sequenced the first chromosome-level genome of assassin bug Rhynocoris fuscipes, a polyphagous generalist predator for biological control of agroecosystems. Compared to non-predatory true bugs Apolygus lucorum and Riptortus pedestris, the R. fuscipes-specific genes were enriched in diet-related genes (e.g., serine proteinase, cytochrome P450) which had higher expression level and more exons than non-diet genes. Extensive A-to-I RNA editing was identified in all three species and showed enrichment in genes associated with diet in R. fuscipes, diversifying the transcriptome. An extended analysis between five predaceous and 27 phytophagous hemipteran species revealed an expansion of diet-related genes in R. fuscipes. Our findings bridge the gap between genotype and phenotype, and also advance our understanding on genetic and epigenetic bases governing the diet shifts in ture bugs.

10.
Front Pharmacol ; 15: 1411642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139632

RESUMO

Background: Chronic intestinal pseudo-obstruction (CIPO) is a type of intestinal dysfunction with symptoms of intestinal blockage but without the actual mechanical obstruction. Currently, there are no drugs available to treat this disease. Herein, we report the characterization of the PrP-SCA7-92Q transgenic (Tg) line as a valuable CIPO mouse model and investigated the tolerability and efficacy of the 5-hydroxytryptamine type-4 receptor (5HT4R) agonist velusetrag as a promising pharmacological treatment for CIPO. Methods: To test the pharmacodynamics of velusetrag, 8-week-old SCA7 Tg mice, which express human mutated Ataxin-7 gene containing 92 CAG repeats under the mouse prion protein promoter, were treated for 5 weeks by oral route with velusetrag at 1 and 3 mg/kg doses or vehicle. Body weight was monitored throughout the treatment. After sacrifice, the small intestine and proximal colon were collected for whole-mount immunostaining. Untreated, age-matched, C57BL/6J mice were also used as controls in comparison with the other experimental groups. Results: Analysis of SCA7 Tg mice showed tissue damage and alterations, mucosal abnormalities, and ulcers in the distal small intestine and proximal colon. Morphological changes were associated with significant neuronal loss, as shown by decreased staining of pan-neuronal markers, and with accumulation of ataxin-7-positive inclusions in cholinergic neurons. Administration of velusetrag reversed intestinal abnormalities, by normalizing tissue damage and re-establishing the normal level of glia/neuron's count in both the small and large intestines. Conclusion: We demonstrated that the PrP-SCA7-92Q Tg line, a model originally developed to mimic spinocerebellar ataxia, is suitable to study CIPO pathology and can be useful in establishing new therapeutic strategies, such as in the case of velusetrag. Our results suggest that velusetrag is a promising compound to treat patients affected by CIPO or intestinal dysmotility disease.

11.
Biochem Genet ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833082

RESUMO

Targeting protein for Xenopus kinesin-like protein 2 (TPX2), a well-known mitotic protein, has been linked to carcinogenesis in several cancers. This study investigated the role of TPX2 in hepatocellular carcinoma (HCC) from various aspects using bioinformatic analyses. TPX2 expression and its prognostic value in pan-cancers were analyzed using SangerBox. TPX2 expression and its association with prognosis, immune infiltration, tumor mutations, and signaling pathways in HCC were analyzed using UALCAN, BoxKaplan-Meier Plotter, GEPIA, Human Protein Atlas, TIMER 2.0, and SangerBox. Genes co-expressed with TPX2 in HCC were analyzed using the HCCDB database, followed by functional enrichment using SangerBox. Clinical predictive models were established based on TPX2 and its co-expressed genes using the ACLBI database. TPX2 expression significantly increased in pan-cancers and was associated with survival in nearly half of the cancer types. High TPX2 expression has been linked to poor survival outcomes in patients with HCC. TPX2 expression was positively correlated with abundant infiltration of immune cells (including B cells, CD4 + /CD8 + T cells, macrophages, neutrophils, and dendritic cells), TP53 mutation, and carcinogenesis-related pathways, such as the PI3K/AKT/mTOR pathway, cellular response to hypoxia, and tumor proliferation signature. Nineteen genes were found to be co-expressed with TPX2 in HCC, and these genes showed close positive correlations and were mainly implicated in cell cycle-related functions. A prognostic model established using TPX2 and its expressed genes could stratify HCC patients into high- and low-risk groups, with a significantly shorter survival time in high-risk groups. The prognostic model performed well in predicting 1-, 3-, and 5-year survival of patients with HCC, with areas under the curve of 0.801, 0.725, and 0.711, respectively. TPX2 functions as an oncogene in HCC, and its high expression is detrimental to the survival of patients with HCC. Thus, TPX2 may be a prognostic biomarker and potential therapeutic target for HCC.

12.
Surgery ; 176(3): 785-797, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38851900

RESUMO

BACKGROUND: Advanced clear cell renal cell carcinoma still lacks reliable diagnostic and prognostic biomarkers. Recently, tumor vaccines targeting specific molecules have been proposed as a promising treatment in mitigating tumor progression, which was rekindled under the background of the COVID-19 pandemic. However, the application of messenger RNA vaccine against advanced clear cell renal cell carcinoma antigens remains stagnant, and no subgroup of patients deemed suitable for vaccination has been extensively studied or validated. Our study aims to explore novel advanced clear cell renal cell carcinoma antigen signatures to select suitable patients for vaccination. METHODS: Gene expression profiles of advanced clear cell renal cell carcinoma samples and their corresponding clinical data were retrieved from The Cancer Genome Atlas. The least absolute shrinkage and selection operator model was applied to develop signatures to stratify patients with advanced clear cell renal cell carcinoma. Receiver operating characteristic analysis was used to compare the prognostic accuracy of each factor. Tumor Immune Estimation Resource was used to visualize the relationship between the proportion of antigen-presenting cells and the expression of filtered genes. The "CIBERSORT" and "WGCNA" R Packages were employed to ascertain disparities in immune infiltration levels between advanced clear cell renal cell carcinoma subgroups. The Search Tools for the Retrieval of Interacting Genes database and Cytoscape were used to construct the protein-protein interaction network. CCK-8 and colony formation assays were included in the invitro experiment. RESULTS: In total, 244 potential tumor antigens were identified. Using the least absolute shrinkage and selection operator Cox regression, 21 tumor antigens were selected for developing a risk evaluation signature. The risk score signature can be a useful tool to predict the outcome of advanced clear cell renal cell carcinoma patients. According to the differential clinical, molecular, and immune-related genes, we divided advanced clear cell renal cell carcinoma patients into the immune "cold" subtype and immune "hot" subtype. By developing a logistic score, the immune subtype signature can better distinguish a patient more likely to be immune "cold" subtype or immune "hot" subtype. Interestingly, patients with high risk scores had a higher proportion of immune "hot" subtype than those with a low risk score. Furthermore, the prognostic value was significantly improved when combining risk score and immune subtype. Distinct immune landscapes and signal pathways were observed between different tumor subtypes. Finally, novel tumor antigens related to oxidative stress were identified. CONCLUSION: The tumor-antigens-based risk score and immune subtype signatures identified potentially effective neo-antigens for advanced clear cell renal cell carcinoma messenger RNA vaccine development, and patients with low risk scores and immune "cold" subtype tumors are more prone to benefit from messenger RNA vaccination. Furthermore, our study highlights the significant role of oxidative stress in determining the efficacy of the messenger RNA vaccine.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Vacinas de mRNA , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/imunologia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Prognóstico , COVID-19/imunologia , COVID-19/prevenção & controle , Masculino , Feminino , Perfilação da Expressão Gênica , Transcriptoma , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética
13.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732862

RESUMO

Online monitoring and real-time feedback on inclusions in molten metal are essential for metal quality control. However, existing methods for detecting aluminum melt inclusions face challenges, including interference, prolonged processing times, and latency. This paper presents the design and development of an online monitoring system for molten metal inclusions. Initially, the system facilitates real-time adjustment of signal acquisition parameters through a multiplexer. Subsequently, it employs a detection algorithm capable of swiftly extracting pulse peaks, with this task integrated into our proprietary host computer software to ensure timely detection and data visualization. Ultimately, we developed a monitoring device integrated with this online monitoring system, enabling the online monitoring of the aluminum alloy filtration process. Our findings indicate that the system can accurately measure the size and concentration of inclusions during the filtration process in real time, offering enhanced detection speed and stability compared to the industrial LiMCA CM (liquid metal cleanliness analyzer continuous monitoring) standard. Furthermore, our evaluation of the filtration process demonstrates that the effectiveness of filtration significantly improves with the increase in inclusion sizes, and the synergistic effect of combining CFF (ceramic foam filter) and MCF (metallics cartridge filter) filtration methods exceeds the performance of the CFF method alone. This system thus provides valuable technical support for optimizing filtration processes and controlling inclusion quality.

14.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732873

RESUMO

Traditional methods for assessing the cleanliness of liquid metal are characterized by prolonged detection times, delays, and susceptibility to variations in sampling conditions. To address these limitations, an online cleanliness-analyzing system grounded in the method of the electrical sensing zone has been developed. This system facilitates real-time, in situ, and quantitative analysis of inclusion size and amount in liquid metal. Comprising pneumatic, embedded, and host computer modules, the system supports the continuous, online evaluation of metal cleanliness across various metallurgical processes in high-temperature environments. Tests conducted with gallium liquid at 90 °C and aluminum melt at 800 °C have validated the system's ability to precisely and quantitatively detect inclusions in molten metal in real time. The detection procedure is stable and reliable, offering immediate data feedback that effectively captures fluctuations in inclusion amount, thereby meeting the metallurgical industry's demand for real-time analyzing and control of inclusion cleanliness in liquid metal. Additionally, the system was used to analyze inclusion size distribution during the hot-dip galvanizing process. At a zinc melt temperature of 500 °C, it achieved a detection limit of 21 µm, simultaneously providing real-time data on the size and amount distribution of inclusions. This represents a novel strategy for the online monitoring and quality control of zinc slag throughout the hot-dip galvanizing process.

15.
Biology (Basel) ; 13(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38785787

RESUMO

The assassin bug Sycanus bifidus has a wide distribution across southern China. This study explored its distribution and evolution by analyzing mitochondrial and nuclear ribosomal RNA genes, revealing how Pleistocene climate and geological changes shaped its phylogeography. We identified two main clades, A and B, that diverged in the Middle Pleistocene. Hainan Island's populations form a unique group within Clade A, suggesting that the Qiongzhou Strait served as a dispersal corridor during glaciation. Rising sea levels likely separated the Hainan population afterward. Ecological niche modeling showed that both populations have been viable since the last interglacial period, with demographic analyses indicating possible expansions during the Middle and Late Pleistocene, driven by favorable climates. This study highlights the significant effects of Pleistocene sea-level and climatic changes on the distribution and evolution of S. bifidus in China.

16.
Mitochondrial DNA B Resour ; 9(5): 631-635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751733

RESUMO

In the present study, the complete mitochondrial genome (mitogenome) of the Papilio macilentus (Lepidoptera: Papilionoidea: Papilionidae) was sequenced by next-generation sequencing method. The mitochondrial genome is a circular DNA molecule of 15,264 bp in size with 80.7% AT content, including 37 genes (13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes), and a long non-coding region (Control region). All protein-coding genes are initiated by ATN codons, and terminated with TAA, TAG, or single T. All tRNAs can be folded into common clover leaf secondary structure, except trn-S1. Phylogenetic analyses based on 13 protein-coding genes and 2 rRNA genes using maximum likelihood and Bayesian inference confirmed that P. macilentus and Papilio memnon are clustered into a clade, and revealed the relationships between Papilionini, Troidini, Teinopaippini and Leptocircini.

17.
Ambio ; 53(9): 1323-1335, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38653867

RESUMO

Protected areas (PAs) are effective in mitigating human pressures, yet their future pressure alleviating effects remain unclear. In this study, we employed the ConvLSTM model to forecast the future human footprint and analyzed human pressure trends using Theil-Sen median and Mann-Kendall tests. We further evaluated the mitigating effects of PAs within their buffer zones (1-10 km) and the contributions of different IUCN categories of PAs to mitigating human pressure using linear regression models. The results indicate that by 2035, the average human pressure value is expected to increase by 11%, with trends exhibiting a polarized pattern. Furthermore, PAs also effectively mitigate human pressure within their 1 km buffer zones. Different categories of PAs vary in their effectiveness in mitigating human pressure, and stricter conservation areas are not always the most effective. This study can offer insights for evaluating the effectiveness of PAs in reducing human pressure and advocate for their targeted management in urban areas.


Assuntos
Conservação dos Recursos Naturais , Humanos , Conservação dos Recursos Naturais/métodos , Modelos Teóricos
18.
Front Biosci (Landmark Ed) ; 29(3): 91, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38538254

RESUMO

OBJECTIVE: The morphology and functions of the human trabecular meshwork (HTM) are dysregulated in glaucoma, and the molecular mechanisms of this dysregulation remain unknown. According to an established in vitro model, whose function was to study the regulatory networks sustaining the response of HTM cells to the increased substrate stiffness, we systematically analyzed the expression pattern of long noncoding RNAs (lncRNAs), the important regulatory RNAs in cells. METHODS: Bioinformatics analysis was performed to identify the dysregulated lncRNAs in response to increased substrate stiffness using transcriptome sequencing data (RNA-seq). Then we interfered with the expression of several dysregulated lncRNAs in HTM cells to explore their molecular targets. The cross-linking immunoprecipitation and sequencing method (CLIP-seq) was used to identify enhancer of zeste homolog 2 (EZH2)-targeted RNAs in HTM cells. The chromatin IP and sequencing method (ChIP-seq) was used to identify the targets of EZH2 and histone H3 at lysine 27 (H3K27me3). RESULTS: The response of thousands of dysregulated lncRNAs to increased substrate stiffness was identified through RNA-seq. Functional prediction of these lncRNAs revealed that they potentially regulated key biological processes, including extracellular matrix (ECM) organization. By interfering with the expression of lncRNA SHNG8, ZFHX4-AS1, and RP11-552M11.4, the results demonstrated that those lncRNAs extensively regulated the expression levels of ECM-associated genes. Moreover, we found that EZH2 expression was significantly decreased at high substrate stiffness. Using CLIP-seq to identify EZH2-targeted RNAs in HTM cells, we found that SNHG8 was bound by EZH2. According to the CLIP-seq data of EZH2, we found that EZH2 binding sites were observed in the transcripts of SNHG8-regulated genes, but not in the ChIP-seq results of EZH2 and H3K27me3. CONCLUSION: Our results suggest that SNHG8 and EZH2 may cooperate to regulate the expression of a subset of genes by influencing their RNA abundance, explaining how they support HTM cell morphology and high density. This study contributes to the understanding of the alteration of HTM during the progression of glaucoma by identifying functional lncRNAs, especially SNHG8, and suggests novel therapeutic targets to treat glaucoma.


Assuntos
Glaucoma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Histonas/metabolismo , Transcriptoma , Malha Trabecular/metabolismo , Cromatina/metabolismo , Biologia Computacional/métodos , Glaucoma/genética , Glaucoma/metabolismo
19.
J Am Chem Soc ; 146(13): 9230-9240, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38494637

RESUMO

Keratan sulfate (KS) is a proteoglycan that is widely expressed in the extracellular matrix of various tissue types, where it performs multiple biological functions. KS is the least understood proteoglycan, which in part is due to a lack of panels of well-defined KS oligosaccharides that are needed for structure-binding studies, as analytical standards, to examine substrate specificities of keratinases, and for drug development. Here, we report a biomimetic approach that makes it possible to install, in a regioselective manner, sulfates and fucosides on oligo-N-acetyllactosamine (LacNAc) chains to provide any structural element of KS by using specific enzyme modules. It is based on the observation that α1,3-fucosides, α2,6-sialosides and C-6 sulfation of galactose (Gal6S) are mutually exclusive and cannot occur on the same LacNAc moiety. As a result, the pattern of sulfation on galactosides can be controlled by installing α1,3-fucosides or α2,6-sialosides to temporarily block certain LacNAc moieties from sulfation by keratan sulfate galactose 6-sulfotransferase (CHST1). The patterns of α1,3-fucosylation and α2,6-sialylation can be controlled by exploiting the mutual exclusivity of these modifications, which in turn controls the sites of sulfation by CHST1. Late-stage treatment with a fucosidase or sialidase to remove blocking fucosides or sialosides provides selectively sulfated KS oligosaccharides. These treatments also unmasked specific galactosides for further modification by CHST1. To showcase the potential of the enzymatic strategy, we have prepared a range of poly-LacNAc derivatives having different patterns of fucosylation and sulfation and several N-glycans decorated by specific arrangements of sulfates.


Assuntos
Galactose , Sulfato de Queratano , Sulfato de Queratano/química , Biomimética , Oligossacarídeos , Carboidrato Sulfotransferases , Proteoglicanas , Galactosídeos , Sulfatos
20.
Transl Oncol ; 44: 101942, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555741

RESUMO

Cisplatin resistance plays a significant role in the dismal prognosis and progression of muscle-invasive bladder cancer (MIBC). However, the strategies to predict prognosis and cisplatin resistance are inefficient, and it remains unclear whether cisplatin resistance is associated with tumor immunity. In this study, we integrated the transcriptional data from cisplatin-resistant cell lines and a TCGA-MIBC cohort to establish cisplatin-resistance-related cluster classification and a cisplatin-resistance-related gene risk score (CRRGRS). Kaplan-Meier survival curves showed that compared with those in low CRRGRS group, MIBC patients belonging to high CRRGRS group had worse prognosis in TCGA-MIBC cohort and external GEO cohorts. Meanwhile, CRRGRS was able to help forecast chemotherapy and immunotherapy response of MIBC patients in the TGCA cohort and IMvigor210 cohort. Moreover, compared with the low CRRGRS group, the high CRRGS group possessed a relatively immunosuppressive "cold tumor" phenotype with a higher tumor immune dysfunction and exclusion (TIDE) score, ESTIMATE score, stromal score and immune score and a lower immunophenoscore (IPS) score. The upregulated expression levels of immune checkpoint genes, including PD-1, PD-L1 and CTLA4, in the high CRRGRS group also further indicated that a relative immunosuppressive tumor microenvironment may exist in MIBC patients belonging to high CRRGRS group. In addition, we integrated CRRGRS and clinical characteristics with prognostic value to develop a nomogram, which could help forecast overall survival of MIBC patients. Furthermore, DIAPH3 was identified as a regulator of proliferation and cisplatin resistance in MIBC. The expression of DIAPH3 was increased in cisplatin-resistant cell lines and chemotherapy-unsensitive people. Further mechanism exploration revealed that DIAPH3 facilitated tumor proliferation and cisplatin resistance by regulating the NF-kB and epithelial-mesenchymal transition (EMT) pathways. In conclusion, the comprehensive investigations of CRRGRS increased the understanding of cisplatin resistance and provided promising insights to restrain tumor growth and overcome chemoresistance by targeting DIAPH3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA