Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Heliyon ; 10(10): e31412, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831828

RESUMO

Background: /Aim: Chronic hepatitis B patients often develop concomitant fatty liver disease, which is associated with increased risk of liver cirrhosis and hepatocarcinoma. Our previous studies have shown that apolipoprotein H (APOH) levels are gradually decreased in patients with chronic HBV infection at different stages of disease progression, and APOH deficiency disrupted hepatic lipid metabolism and caused fatty liver. We focus on the relationship between APOH and hepatocellular carcinoma (HCC) in the context of chronic HBV infection. Methods and results: APOH was downregulated at the transcriptional level in HBV-related HCC patients from open-source human liver transcriptome databases, and relatively high expression of APOH might be a favourable prognostic marker in HCC. APOH downregulation was positively associated with tumour grade and HCC subtypes. The analysis result of CHCC-HBV database showed that APOH-associated differential expression genes (DEGs) enriched in lipid metabolic pathways and downregulated APOH correlated with macrophage, neutrophil and CD8 T cell infiltration levels. Next, in vitro experiments were performed and APOH gene was silenced in HepG2.2.15 cells, an HBV producing human HCC cells. Further transcriptomic assay and analysis revealed the DEGs were enriched in cholesterol metabolism. The subsequent RT-qPCR experiments identified that CYP7A1 expression was higher upregulated in APOH silencing HepG2.2.15 cells than vehicle control cells (p < 0.05). Finally, demographic data of patients with HBV-related HCC were enrolled, and serum APOH levels were analysed using ELISA. Serum APOH levels were significantly lower in patients with HCC than in healthy controls (p < 0.05), and positively correlated with triglyceride level in healthy controls (p < 0.05). In HBV-HCC patients, serum APOH levels were positively correlated with albumin levels and negatively correlated with alkaline phosphatase (ALP), total bilirubin, and INR levels (p < 0.05). Conclusion: APOH downregulation disrupted liver lipid metabolism to potentially affect the overall survival in patients with HBV-related HCC.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38668213

RESUMO

Nowadays, metal oxide semiconductor gas sensors have diverse applications ranging from human health to smart agriculture with the development of Internet of Things (IoT) technologies. However, high operating temperatures and an unsatisfactory detection capability (high sensitivity, fast response/recovery speed, etc.) hinder their integration into the IoT. Herein, a ternary heterostructure was prepared by decorating WO3 nanoplates with Au and SnO2 nanoparticles through a facial photochemical deposition method. This was employed as a sensing material for 3-hydroxy-2-butanone (3H-2B), a biomarker of Listeria monocytogenes. These Au/SnO2-WO3 nanoplate-based sensors exhibited an excellent response (Ra/Rg = 662) to 25 ppm 3H-2B, which was 24 times higher than that of pure WO3 nanoplates at 140 °C. Moreover, the 3H-2B sensor showed an ultrafast response and recovery speed to 25 ppm 3H-2B as well as high selectivity. These excellent sensing performances could be attributed to the rich Au/SnO2-WO3 active interfaces and the excellent transport of carriers in nanoplates. Furthermore, a wireless portable gas sensor equipped with the Au/SnO2-WO3 nanoplates was assembled, which was tested using 3H-2B with known concentrations to study the possibilities of real-time gas monitoring in food quality and safety.

3.
Food Chem ; 445: 138682, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350196

RESUMO

Food matrices greatly impact TBBQ content during digestion, while lacking sufficient research and understanding. This study investigated the influence and mechanism of fried foods on the TBBQ-eliminated performance during in-vitro digestion. The results indicated that TBBQ content varied significantly among food matrices after in-vitro digestion, with the highest in peanuts (38.3%). The correlation analysis revealed that proteins remarkably facilitated TBBQ-eliminations while fats decreased the TBBQ-eliminated rate. The TBBQ-eliminated performance of proteins, protein digestive mixtures, and amino acids uncovered that sulfhydryl groups were crucial reactive groups to eliminate TBBQ, and TBBQ-eliminated rates under intestinal pH (8.0) were faster than gastric pH (1.5). Additionally, fats significantly reduced the protein-triggered TBBQ-eliminations, originating that the oil-water interface increased the interaction difficulty between lipophilic TBBQ and proteins. Thus, this work provided an in-depth understanding of food matrices (especially proteins and fats) in TBBQ eliminations to enlighten the promising TBBQ-risk-reduced strategies with high-protein and low-fat foods.


Assuntos
Alimentos , Intestinos , Digestão
5.
J Pharm Sci ; 113(2): 493-501, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38043685

RESUMO

During the development of headspace gas chromatography (HSGC) method for assessing residual solvents in rosuvastatin calcium (RSV) drug substance, acetaldehyde (AA) was detected in obtained chromatograms, with a calculated concentration of up to 226 ppm. After a series of experiments, it was established that acetaldehyde originates from matrix interference due to direct degradation of Imp-C, which is accompanied by the formation of impurity at relative retention time (RRT) 2.18, without the involvement of impurity at RRT 2.31. The thermal instability of Imp-C also results in the formation of impurity at RRT 2.31 through dehydration and decarboxylation. In addition, cyclization reaction of degradant at RRT 2.18 further resulted in the generation of impurity at RRT 2.22. The structure of these three degradants, were confirmed by liquid chromatography-mass spectrometry (LC-MS), 1D and 2D nuclear magnetic resonance (NMR) measurement. In order to minimize the said matrix interference, a simple precipitation procedure was proposed as a pretreatment to mitigate the impact of Imp-C. Subsequently, an HSGC method was developed for the simultaneous determination of the degradant AA and the other five residual solvents used in RSV synthetic process. The final method was validated concerning precision, limit of detection (LOD) and limit of quantitation (LOQ), linearity, and accuracy.


Assuntos
Cromatografia Líquida de Alta Pressão , Cromatografia Líquida de Alta Pressão/métodos , Rosuvastatina Cálcica , Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção , Solventes
6.
Food Chem Toxicol ; 183: 114200, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029872

RESUMO

2-tert-butyl-1,4-benzoquinone (TBBQ), a degradation product of lipid antioxidant Tert-Butylhydroquinone (TBHQ), is a new hazardous compound in foods. This study investigated whether co-ingestion of dietary protein and TBBQ can alleviate the toxicity of TBBQ. The results indicated that soy protein isolate, whey protein isolate, and rice protein significantly reduced the residual amount of TBBQ during simulated gastrointestinal digestion. This result was attributed to the excellent elimination capacity of the released amino acids for TBBQ through formation of adducts. Among 20 amino acids, histidine, lysine, glycine, and cysteine showed better elimination capacity for TBBQ; they can eliminate 92.1%, 89.4%, 86.1%, and almost 100%, respectively, in 5 min at pH 8.0. Further study indicated that amino acids with lower ionization constant exhibited greater TBBQ elimination capacity. In addition, incubation of the cells with 50 µM TBBQ for 12 h decreased the cell viability to 28.95 ± 3.25%; while amino acids intervention was involved in the alleviation of TBBQ cytotoxicity via decreasing ROS. Particularly, cysteine showed 100 times more TBBQ detoxifying capacity than other amino acids. This work could provide a theoretical basis for the potential application of amino acids for detoxifying TBBQ in the food industry.


Assuntos
Aminoácidos , Cisteína , Cisteína/farmacologia , Proteínas Alimentares , Digestão
7.
J Lipid Res ; 65(1): 100483, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101620

RESUMO

Apolipoprotein H (APOH) downregulation can cause hepatic steatosis and gut microbiota dysbiosis. However, the mechanism by which APOH-regulated lipid metabolism contributes to metabolic dysfunction-associated steatotic liver disease (MASLD) remains undetermined. Herein, we aim to explore the regulatory effect of APOH, mediated through various pathways, on metabolic homeostasis and MASLD pathogenesis. We analyzed serum marker levels, liver histopathology, and cholesterol metabolism-related gene expression in global ApoH-/- C57BL/6 male mice. We used RNA sequencing and metabolomic techniques to investigate the association between liver metabolism and bacterial composition. Fifty-two differentially expressed genes were identified between ApoH-/- and WT mice. The mRNA levels of de novo lipogenesis genes were highly upregulated in ApoH-/- mice than in WT mice. Fatty acid, glycerophospholipid, sterol lipid, and triglyceride levels were elevated, while hyodeoxycholic acid levels were significantly reduced in the liver tissues of ApoH-/- mice than in those of WT mice. Microbial beta diversity was lower in ApoH-/- mice than in WT mice, and gut microbiota metabolic functions were activated in ApoH-/- mice. Moreover, ApoH transcripts were downregulated in patients with MASLD, and APOH-related differential genes were enriched in lipid metabolism. Open-source transcript-level data from human metabolic dysfunction-associated steatohepatitis livers reinforced a significant association between metabolic dysfunction-associated steatohepatitis and APOH downregulation. In conclusion, our studies demonstrated that APOH downregulation aggravates fatty liver and induces gut microbiota dysbiosis by dysregulating bile acids. Our findings offer a novel perspective on APOH-mediated lipid metabolic dysbiosis and provide a valuable framework for deciphering the role of APOH in fatty liver disease.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Camundongos , Animais , Metabolismo dos Lipídeos/genética , beta 2-Glicoproteína I/genética , beta 2-Glicoproteína I/metabolismo , beta 2-Glicoproteína I/farmacologia , Regulação para Baixo , Disbiose/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Ácidos Graxos/metabolismo
8.
Small ; 19(11): e2207235, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36650994

RESUMO

Developing robust and highly active bifunctional electrocatalysts for overall water splitting is critical for efficient sustainable energy conversion. Herein, heteroatom-doped amorphous/crystalline ruthenium oxide-based hollow nanocages (M-ZnRuOx (MCo, Ni, Fe)) through delicate control of composition and structure is reported. Among as-synthesized M-ZnRuOx nanocages, Co-ZnRuOx nanocages deliver an ultralow overpotential of 17 mV at 10 mA cm-2 and a small Tafel slope of 21.61 mV dec-1 for hydrogen evolution reaction (HER), surpassing the commercial Pt/C catalyst, which benefits from the synergistic coupling effect between electron regulation induced by Co doping and amorphous/crystalline heterophase structure. Moreover, the incorporation of Co prevents Ru from over-oxidation under oxygen evolution reaction (OER) operation, realizing the leap from a monofunctional to multifunctional electrocatalyst and then Co-ZnRuOx nanocages exhibit remarkable OER catalytic activity as well as overall water splitting performance. Combining theory calculations with spectroscopy analysis reveal that Co is not only the optimal active site, increasing the number of exposed active sites while also boosting the long-term durability of catalyst by modulating the electronic structure of Ru atoms. This work opens a considerable avenue to design highly active and durable Ru-based electrocatalysts.

9.
Ann Med ; 55(1): 215-223, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36576390

RESUMO

BACKGROUND AND AIMS: Currently, there are still no definitive consensus in the treatment of intrahepatic cholangiocarcinoma (iCCA). This study aimed to build a clinical decision support tool based on machine learning using the Surveillance, Epidemiology, and End Results (SEER) database and the data from the Fifth Medical Center of the PLA General Hospital in China. METHODS: 4,398 eligible patients from the SEER database and 504 eligible patients from the hospital data, who presented with histologically proven iCCA, were enrolled for modeling by cross-validation based on machine learning. All the models were trained using the open-source Python library scikit-survival version 0.16.0. Shapley additive explanations method was used to help clinicians better understand the obtained results. Permutation importance was calculated using library ELI5. RESULTS: All involved treatment modalities could contribute to a better prognosis. Three models were derived and tested using different data sources, with concordance indices of 0.67, 0.69, and 0.73, respectively. The prediction results were consistent with those under actual situations involving randomly selected patients. Model 2, trained using the hospital data, was selected to develop an online tool, due to its advantage in predicting short-term prognosis. CONCLUSION: The prediction model and tool established in this study can be applied to predict the prognosis of iCCA after treatment by inputting the patient's clinical parameters or TNM stages and treatment options, thus contributing to optimal clinical decisions.KEY MESSAGESA prognostic model related to disease staging and treatment mode was conducted using the method of machine learning, based on the big data of multi centers.The online calculator can predict the short-term survival prognosis of intrahepatic cholangiocarcinoma, thus, help to make the best clinical decision.The online calculator built to calculate the mortality risk and overall survival can be easily obtained and applied.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Estudos de Viabilidade , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/terapia , Prognóstico , Aprendizado de Máquina , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/terapia
10.
Small Methods ; 6(8): e2200515, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35775958

RESUMO

Developing a low-cost, pH-universal electrocatalyst is desirable for electrochemical water splitting but remains a challenge. NiCoP is a promising non-noble hydrogen-evolving electrocatalyst due to its high intrinsic electrical conductivity, fast mass transfer effects, and tunable electronic structure. Nevertheless, its hydrogen evolution reaction (HER) activity in full pH-range has been rarely developed. Herein, a Ni-Co carbonate-hydroxide induced metal-organic framework transformation strategy is proposed to in situ grow porous, honeycomb-like NiCoP nanoplates on Ni foam for high-performance, pH-universal hydrogen evolution reaction. The resultant NiCoP catalyst exhibits a highly 2D nanoporous network in which 20-50 nm, well-crystalline nanoparticles are interconnected with each other closely, and delivers versatile HER electroactivity with η10 of 98, 105, and 97 mV in 1 m KOH, 0.5 m H2 SO4 , and 1 m phosphate buffer solution electrolytes, respectively. This overpotential remarkably surpasses the one of commercial Pt/Cs in both neutral and alkaline media at a large current density (>100 mA cm-2 ). The corresponding full water-splitting electrolyzer constructed from the 2D porous NiCoP cathode requires only a cell voltage of 1.43 V at 10 mA cm-2 , superior to most recently reported electrocatalysts. This work may open up a new avenue on the rational design of nonprecious, pH-universal electrocatalyst.

11.
Small Methods ; 6(7): e2200459, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35587615

RESUMO

Electrochemical overall water splitting using renewable energy input is highly desirable for large-scale green hydrogen generation, but it is still challenged due to the lack of low-cost, durable, and highly efficient electrocatalysts. Herein, 1D nanowires composed of numerous 2 nm Co0.85 Se-NiSe nanograin heterojunctions as efficient precious metal-free bifunctional electrocatalyst are reported for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solution with the merits of high activity, durability, and low cost. The abundant microinterface among the ultrafine nanograins and the presence of lattice distortion around nanograin interface is found to create a superhydrophilic surface of the electrocatalyst, which significantly facilitate the fast diffusion of electrolytes and the release of the formed H2 and O2 from the catalyst surface. Furthermore, synergic effect between Co0.85 Se and NiSe grain on adjusting the electronic structure is revealed, which enhances electron mobility for fast electron transport during the HER/OER process. Owing to these merits, the rationally designed Co0.85 Se-NiSe heterostructures display efficient overall water splitting behavior with a low voltage of 1.54 V at 10 mA cm-2 and remarkable long-term durability for the investigated period of 50 h.

12.
Aesthetic Plast Surg ; 46(4): 1983-1996, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35441235

RESUMO

Interventions for extrinsic aging can be implemented, but these must address photoaging, which is the primary cause of extrinsic aging. Pigmentation due to photoaging depends on the duration and intensity of sun exposure. This study investigated the relationship between adipose-derived mesenchymal stem cells (ASCs) and photoaging pigmentation, and the underlying mechanism of action by establishing a photoaging pigmentation model using various treatments and exposure options in a guinea pigs. The energy dose of each UVB irradiation was 120 mJ/cm2 and the total dose of irradiation was 360 mJ/cm2. After successfully establishing the photoaging model, ASCs (1×106) in an balanced salt solution (0.9 ml), balanced salt solution (0.9 ml), and bFGF (9 µg) mixed with an balanced salt solution (0.9 ml) were injected intradermally in ten guinea pigs. ELISA, macroscopic skin and histological observations, and Masson-Fontana staining were done. At 2 and 4 weeks post-injection, noticeable changes were observed. Guinea pigs receiving ASCs injections displayed significantly lower visible skin scores while the melanin content continued to decrease. Somewhat improved histopathological morphology, including epidermal thinning, dermal thickening, and little inflammatory cell infiltration was observed immediately after and up to 4 weeks of ASCs injection. Melanocortin 1 receptor (MC1R) and alpha-melanocyte test hormone (alpha-MSH) levels reduced significantly, and basic fibroblast growth factor (bFGF) levels increased significantly immediately after and up to 4 weeks of ASCs injection. The MC1R and alpha-MSH levels reduced significantly immediately after and up to 4 weeks of bFGF injection. Briefly, intradermal ASCs injection can notably eliminate pigmentation in a guinea pig photoaging pigmentation model. This may be related to the fact that bFGF secreted by ASCs lowers MC1R and alpha-MSH levels, blocks the cAMP signalling pathway, and inhibits melanin synthesis. This finding may present new options for treating photoaging pigmentation.Level of Evidence: N/A.


Assuntos
Células-Tronco Mesenquimais , Receptor Tipo 1 de Melanocortina , Animais , Fator 2 de Crescimento de Fibroblastos/farmacologia , Cobaias , Melaninas , Células-Tronco Mesenquimais/metabolismo , Pigmentação , Receptor Tipo 1 de Melanocortina/metabolismo , alfa-MSH/farmacologia
13.
Front Cardiovasc Med ; 9: 845210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321110

RESUMO

Background: There is currently a lack of model for predicting the occurrence of venous thromboembolism (VTE) in patients with lung cancer. Machine learning (ML) techniques are being increasingly adapted for use in the medical field because of their capabilities of intelligent analysis and scalability. This study aimed to develop and validate ML models to predict the incidence of VTE among lung cancer patients. Methods: Data of lung cancer patients from a Grade 3A cancer hospital in China with and without VTE were included. Patient characteristics and clinical predictors related to VTE were collected. The primary endpoint was the diagnosis of VTE during index hospitalization. We calculated and compared the area under the receiver operating characteristic curve (AUROC) using the selected best-performed model (Random Forest model) through multiple model comparison, as well as investigated feature contributions during the training process with both permutation importance scores and the impurity-based feature importance scores in random forest model. Results: In total, 3,398 patients were included in our study, 125 of whom experienced VTE during their hospital stay. The ROC curve and precision-recall curve (PRC) for Random Forest Model showed an AUROC of 0.91 (95% CI: 0.893-0.926) and an AUPRC of 0.43 (95% CI: 0.363-0.500). For the simplified model, five most relevant features were selected: Karnofsky Performance Status (KPS), a history of VTE, recombinant human endostatin, EGFR-TKI, and platelet count. We re-trained a random forest classifier with results of the AUROC of 0.87 (95% CI: 0.802-0.917) and AUPRC of 0.30 (95% CI: 0.265-0.358), respectively. Conclusion: According to the study results, there was no conspicuous decrease in the model's performance when use fewer features to predict, we concluded that our simplified model would be more applicable in real-life clinical settings. The developed model using ML algorithms in our study has the potential to improve the early detection and prediction of the incidence of VTE in patients with lung cancer.

14.
Genome Med ; 14(1): 16, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35172892

RESUMO

BACKGROUND: Understanding the host genetic architecture and viral immunity contributes to the development of effective vaccines and therapeutics for controlling the COVID-19 pandemic. Alterations of immune responses in peripheral blood mononuclear cells play a crucial role in the detrimental progression of COVID-19. However, the effects of host genetic factors on immune responses for severe COVID-19 remain largely unknown. METHODS: We constructed a computational framework to characterize the host genetics that influence immune cell subpopulations for severe COVID-19 by integrating GWAS summary statistics (N = 969,689 samples) with four independent scRNA-seq datasets containing healthy controls and patients with mild, moderate, and severe symptom (N = 606,534 cells). We collected 10 predefined gene sets including inflammatory and cytokine genes to calculate cell state score for evaluating the immunological features of individual immune cells. RESULTS: We found that 34 risk genes were significantly associated with severe COVID-19, and the number of highly expressed genes increased with the severity of COVID-19. Three cell subtypes that are CD16+monocytes, megakaryocytes, and memory CD8+T cells were significantly enriched by COVID-19-related genetic association signals. Notably, three causal risk genes of CCR1, CXCR6, and ABO were highly expressed in these three cell types, respectively. CCR1+CD16+monocytes and ABO+ megakaryocytes with significantly up-regulated genes, including S100A12, S100A8, S100A9, and IFITM1, confer higher risk to the dysregulated immune response among severe patients. CXCR6+ memory CD8+ T cells exhibit a notable polyfunctionality including elevation of proliferation, migration, and chemotaxis. Moreover, we observed an increase in cell-cell interactions of both CCR1+ CD16+monocytes and CXCR6+ memory CD8+T cells in severe patients compared to normal controls among both PBMCs and lung tissues. The enhanced interactions of CXCR6+ memory CD8+T cells with epithelial cells facilitate the recruitment of this specific population of T cells to airways, promoting CD8+T cell-mediated immunity against COVID-19 infection. CONCLUSIONS: We uncover a major genetics-modulated immunological shift between mild and severe infection, including an elevated expression of genetics-risk genes, increase in inflammatory cytokines, and of functional immune cell subsets aggravating disease severity, which provides novel insights into parsing the host genetic determinants that influence peripheral immune cells in severe COVID-19.


Assuntos
Linfócitos T CD8-Positivos/virologia , COVID-19/genética , COVID-19/patologia , Monócitos/virologia , Análise de Célula Única/métodos , COVID-19/imunologia , Biologia Computacional/métodos , Proteínas Ligadas por GPI/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Células Progenitoras de Megacariócitos/imunologia , Células Progenitoras de Megacariócitos/virologia , Monócitos/metabolismo , Locos de Características Quantitativas , Receptores CCR1/imunologia , Receptores CCR1/metabolismo , Receptores CXCR6/imunologia , Receptores CXCR6/metabolismo , Receptores de IgG/metabolismo , Análise de Sequência de RNA , Índice de Gravidade de Doença
15.
Front Biosci (Landmark Ed) ; 26(9): 504-516, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34590463

RESUMO

Highlights: (1) A 3D simulation model of MWA (microwave ablation) based on the temperature-dependent characteristic parameters and blood flow parameters was established to realize the visual simulation of temperature distribution and coagulation zone. The internal forced convection condition was used to accurately characterize the large vessel. (2) The ex vivo MWA experimental platform was built to verify the accuracy of the simulation model. A peristaltic pump was employed for operatively controlling blood circulation and a medical soft plastic tube was introduced for appropriately simulating a blood vessel. (3) The influences of blood flow parameters of large vessels on temperature distribution and coagulation zone were systematically analyzed in order to provide reference and guidance for MWA clinicians. Purpose: Clinical MWA of liver tumor is significantly limited by the accurate prediction of vascular cooling effects. To provide reference and guidance for clinical MWA of liver tumor, the three-dimensional effects of different blood flow parameters of large vessels on MWA temperature distribution were systematically evaluated. Materials and methods: Firstly, the MWA three-dimensional finite element simulation model with blood flow parameters was established. Secondly, to verify the effectiveness of the model, MWA was performed ex vivo in porcine liver for 360 s and the temperature was measured by thermocouples. A medical soft plastic tube was placed parallel to the MWA antenna to simulate a natural liver vessel. Finally, based on this model, the influences of different vessel diameters and vessel-antenna spacings on MWA temperature distribution were analyzed. Results: Sixteen ablations were performed to verify the accuracy of the simulation model. The mean temperature errors between measured data and simulation results at six measurement points were 3.87 ℃. In the first 10 seconds of MWA, the vessel cooling effect on temperature distribution was negligible. When the vessel-antenna spacing was 5 mm and the vessel diameter varied from 3 mm to 6 mm, the temperature at the measured point near the vessel decreased by 2.11 ℃ at 360 s. When the vessel diameter was 6 mm and the vessel-antenna spacing varied from 5 mm to 7 mm, the temperature at the measured point near the vessel reduced by 14.91 ℃ at 360 s. In addition, blood diameter had little influence on the temperature distribution near the heating point. The volume of coagulation zone will not be obviously affected once the vessel lies outside the predicted coagulation zone. Conclusions: The MWA simulation model with blood flow parameters is established. Vessel-antenna spacing is the primary factor affecting the temperature distribution. A vessel with larger diameter can have a more significant effect on the temperature distribution. The large vessel will take away and block part of conduction heat, so the coagulation zone will not be formed on the lateral side of the vessel.


Assuntos
Técnicas de Ablação , Neoplasias Hepáticas , Animais , Fígado/cirurgia , Neoplasias Hepáticas/cirurgia , Micro-Ondas , Suínos , Temperatura
16.
Adv Mater ; 33(14): e2007523, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33656778

RESUMO

Oxygen evolution electrocatalysts are central to overall water splitting, and they should meet the requirements of low cost, high activity, high conductivity, and stable performance. Herein, a general, selenic-acid-assisted etching strategy is designed from a metal-organic framework as a precursor to realize carbon-coated 3d metal selenides Mm Sen (Co0.85 Se1- x , NiSe2- x , FeSe2- x ) with rich Se vacancies as high-performance precious metal-free oxygen evolution reaction (OER) electrocatalysts. Specifically, the as-prepared Co0.85 Se1- x @C nanocages deliver an overpotential of only 231 mV at a current density of 10 mA cm-2 for the OER and the corresponding full water-splitting electrolyzer requires only a cell voltage of 1.49 V at 10 mA cm-2 in alkaline media. Density functional theory calculation reveals the important role of abundant Se vacancies for improving the catalytic activity through improving the conductivity and reducing reaction barriers for the formation of intermediates. Although phase change after long-term operation is observed with the formation of metal hydroxides, catalytic activity is not obviously affected, which strengthens the important role of the carbon network in the operating stability. This study provides a new opportunity to realize high-performance OER electrocatalysts by a general strategy on selenic acid etching assisted vacancy engineering.

17.
Small ; 16(35): e2000698, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32776405

RESUMO

The realizing of high-performance rechargeable aqueous zinc-ion batteries (ZIBs) with high energy density and long cycling life is promising but still challenging due to the lack of suitable layered cathode materials. The work reports the excellent zinc-ion storage performance as-observed in few-layered ultrathin VSe2 nanosheets with a two-step Zn2+ intercalation/de-intercalation mechanism verified by ex situ X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) characterizations. The VSe2 nanosheets exhibit a discharge plateau at 1.0-0.7 V, a specific capacity of 131.8 mAh g-1 (at 0.1 A g-1 ), and a high energy density of 107.3 Wh kg-1 (at a power density of 81.2 W kg-1 ). More importantly, outstanding cycle stability (capacity retention of 80.8% after 500 cycles) without any activation process is achieved. Such a prominent cyclic stability should be attributed to its fast Zn2+ diffusion kinetics (DZn 2+  ≈ 10-8 cm-2 s-1 ) and robust structural/crystalline stability. Density functional theory (DFT) calculation further reveals a strong metallic characteristic and optimal zinc-ion diffusion pathway with a hopping energy barrier of 0.91 eV. The present finding implies that 2D ultrathin VSe2 is a very promising cathode material in ZIBs with remarkable battery performance superior to other layered transitional metal dichalcogenides.

18.
ACS Nano ; 13(9): 10376-10385, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31381305

RESUMO

Rechargeable aqueous Zn-ion batteries (ZIBs) have recently attracted much attention due to their low cost and superior safety. Unfortunately, their low capacity and poor cycle life still hinder their practical application. Here, we have developed a general synthesis strategy for ultrasmall spinel oxide nanodots (Mn3O4, CoMn2O4, MnCo2O4.5, Co3O4, and ZnMn2O4) with abundant oxygen vacancies and highly active surface. Among them, 6.0-nanometer-sized Mn3O4 nanodots deliver the best Zn-ion storage ability with a high reversible capacity of 386.7 mA h g-1 at 0.1 A g-1, excellent rate performance, and a long-term stability of 500 cycles at 0.5 A g-1. Taking advantage of the highly activated surficial atoms, shortened transfer pathway, and introduction of numerous oxygen vacancies, an ultrahigh Zn2+ diffusion coefficient of 2.4 × 10-10 cm2 s-1 has been detected during the discharge process. This value is more than 2 orders of magnitude higher than that of other spinel oxide nanostructures in previous reports and also the highest one in all of the as-reported ZIB cathode materials to date. Our finding offers promising opportunities for the development of ZIB cathode materials with high energy density, long-term cycling stability, excellent flexibility, and wearability.

19.
Nanoscale Adv ; 1(11): 4365-4372, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134408

RESUMO

Aqueous zinc ion secondary batteries (ZIBs) have recently attracted considerable attention and global interest due to their low cost, aqueous-based nature and great safety. Unfortunately, the intrinsic properties of poor cycle life, low energy density and uncontrolled dendrite growth during the charge/discharge process for metallic Zn anodes significantly hinder their practical application. In this work, we rationally designed two-dimensional (2D) δ-MnO2 nanofluidic channels by the ordered restacking of exfoliated MnO2 single atomic layers, which exhibited a high zinc ion transport coefficient (1.93 × 10-14 cm2 s-1) owing to their appropriate d-spacing and the negative charge of the inner channel walls. More importantly, we found that Zn dendrite growth was prevented in the as-assembled ZIBs, resulting in superior stability compared with the bulk-MnO2 sample. Our design sheds light on developing high-performance ZIBs from two-dimensional nanofluidic channels, and this strategy might be applicable to the storage of other metal ions (Mg2+, Ca2+, Al3+, etc.) in next-generation electrochemical energy storage devices.

20.
Nanoscale ; 10(25): 12003-12010, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29905342

RESUMO

The integration of high flexibility, high energy density and wide voltage window for solid-state supercapacitors remains a big challenge to date. Herein, ultrathin CoSeO3·H2O nanoribbons (thickness: ∼14 nm) with typical pseudocapacitive behavior were synthesized in a high yield by a solution-based refluxing process. Freestanding CoSeO3·H2O ribbon/hydroxylated multi-walled carbon nanotube (HWCNT) paper could be fabricated through a vacuum-assisted filtration strategy owing to its ultrathin nature, ribbon-like morphology and inherent flexibility. Unexpectedly, an asymmetric supercapacitor constructed from this as-prepared CoSeO3·H2O/HWCNT hybrid paper exhibits a high 2.4 V voltage window as well as excellent rate capability and cycle performance. The energy density of this device is 132.3 W h kg-1 at 960 W kg-1 with a stable cycling ability of up to 10 000 cycles, which is superior to those of almost all previously reported asymmetric supercapacitors based on freestanding paper. Furthermore, this supercapacitor shows outstanding bendability and mechanical stability at different bending degrees from 0° to 180° with no changes in capacitive behavior. Our work provides new opportunities for developing high-performance asymmetric supercapacitors with high energy density, wide voltage window, and high flexibility in a novel CoSeO3·H2O system for potential applications including flexible displays, collapsible mobile phones, and wearable equipment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA