Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Ther Med ; 19(2): 891-896, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32010249

RESUMO

Assessment of the value of three-dimensional digital subtraction angiography (3D-DSA) combined with neurointerventional thrombolysis in the treatment of senile cerebrovascular occlusion was investigated. A total of 129 patients with senile cerebrovascular occlusion admitted to the Affiliated Hospital of Zunyi Medical University from August 2015 to September 2017 were collected. Among them, 69 patients who underwent neurointerventional catheter thrombolysis under 3D-DSA were included in the study group, and 60 patients treated with neurointerventional thrombolysis were the control group. The levels of inflammatory cytokines IL-6, IL-1ß and IL-8 in the two groups were measured by enzyme linked immunosorbent assay (ELISA) before treatment (T0), 7 days (7d) after treatment (T1) and 14 days (14d) after treatment (T2). The score of the National Institute of Health Stroke Scale and the clinical efficacy of patients in the two groups were compared before and after treatment, and Barthel index (BI) was used for investigation before and after treatment. The recurrence rate of disease in the two groups within 1 year was recorded. At T1, IL-6, IL-1ß and IL-8 in the study group were significantly lower than those in the control group (P<0.05). The NIHSS score in the study group was lower than that in the control group after treatment (P<0.05). The BI score in the study group was significantly higher than that in the control group after treatment (P<0.05). After the prognostic follow-up, the disease recurrence rate of the study group was significantly lower than that of the control group (P<0.05). In conclusion, 3D-DSA combined with neurointerventional thrombolysis can significantly reduce the expression of inflammatory cytokines and improve the quality of life in patients with cerebrovascular occlusion, which has a high clinical value.

2.
Sensors (Basel) ; 19(22)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766236

RESUMO

The novel contribution of this paper is to propose an incremental pose map optimization for monocular vision simultaneous localization and mapping (SLAM) based on similarity transformation, which can effectively solve the scale drift problem of SLAM for monocular vision and eliminate the cumulative error by global optimization. With the method of mixed inverse depth estimation based on a probability graph, the problem of the uncertainty of depth estimation is effectively solved and the robustness of depth estimation is improved. Firstly, this paper proposes a method combining the sparse direct method based on histogram equalization and the feature point method for front-end processing, and the mixed inverse depth estimation method based on a probability graph is used to estimate the depth information. Then, a bag-of-words model based on the mean initialization K-means is proposed for closed-loop feature detection. Finally, the incremental pose map optimization method based on similarity transformation is proposed to process the back end to optimize the pose and depth information of the camera. When the closed loop is detected, global optimization is carried out to effectively eliminate the cumulative error of the system. In this paper, indoor and outdoor environmental experiments are carried out using open data sets, such as TUM and KITTI, which fully proves the effectiveness of this method. Closed-loop detection experiments using hand-held cameras verify the importance of closed-loop detection. This method can effectively solve the scale drift problem of monocular vision SLAM and has strong robustness.

3.
J Colloid Interface Sci ; 424: 124-31, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24767508

RESUMO

Surface sulfhydryl-functionalized magnetic mesoporous silica nanoparticles were prepared, aiming to extract trace alkylmercury from aqueous solution. The prepared nanoparticles were characterized by TEM, ED, EDX, DLS, FTIR, and SERS. Compare with that the non-sulfhydryl-functionalized Fe3O4@SiO2 exhibited almost no affinity for CH3Hg(+) and CH3CH2Hg(+); the sulfhydryl-functionalized Fe3O4@SiO2 exhibited high adsorption affinity for them, resulting from chelating interaction by surface sulfhydryl group, and the adsorption was not significantly impacted by pH within the range of 3.5-9.0 or coexisting metal ions. The monolayer adsorption on surface of Fe3O4@SiO2-RSH could reach equilibrium in 2 min. Moreover, the CH3Hg(+) and CH3CH2Hg(+) adsorbed on Fe3O4@SiO2-RSH could be quickly separated from the matrix in a magnetic field and desorbed easily by acetonitrile and l-cysteine aqueous solution or HCl solution, and the recoveries were more than 80%. Findings of the present work highlight the potential for using Fe3O4@SiO2-RSH magnetic nanoparticles as effective and reusable adsorbents for extraction of ultra trace alkylmercury from environmental water samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA