Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 13(6): e10160, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37313272

RESUMO

The Masai giraffe has experienced a population decline from 70,000 to 35,000 in the past three decades and was declared an endangered subspecies by the IUCN in 2019. The remaining number of Masai giraffe are geographically separated by the steep cliffs of the Gregory Rift escarpments (GRE) in Tanzania and Kenya dividing them into two populations, one west and one east of the GRE. The cliffs of the GRE are formidable barriers to east-west dispersal and gene flow and the few remaining natural corridors through the GRE are occupied by human settlements. To assess the impact of the GRE on Masai giraffe gene flow, we examined whole genome sequences of nuclear and mitochondrial DNA (mtDNA) variation in populations located east (Tarangire ecosystem) and west (Serengeti ecosystem) of the GRE in northern Tanzania. Evidence from mtDNA variation, which measures female-mediated gene flow, suggests that females have not migrated across the GRE between populations in the Serengeti and Tarangire ecosystems in the past ~289,000 years. The analysis of nuclear DNA variation compared to mtDNA DNA variation suggests that male-mediated gene flow across the GRE has occurred more recently but stopped a few thousand years ago. Our findings show that Masai giraffes are split into two populations and fulfill the criteria for designation as distinct evolutionary significant units (ESUs), which we denote as western Masai giraffe and eastern Masai giraffe. While establishing giraffe dispersal corridors across the GRE is impractical, conservation efforts should be focused on maintaining connectivity among populations within each of these two populations. The importance of these efforts is heightened by our finding that the inbreeding coefficients are high in some of these Masai giraffe populations, which could result in inbreeding depression in the small and fragmented populations.

2.
Nat Commun ; 7: 11519, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27187213

RESUMO

The origins of giraffe's imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe's closest relative and provides a useful comparison, to identify genetic variation underlying giraffe's long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe's unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe's stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions.


Assuntos
Genoma , Girafas/genética , Girafas/fisiologia , Adaptação Fisiológica , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Sequência de Bases , Evolução Biológica , Desenvolvimento Ósseo/genética , Análise por Conglomerados , Ontologia Genética , Redes Reguladoras de Genes , Variação Genética , Girafas/anatomia & histologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA