Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Stem Cell Res ; 71: 103143, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37343429

RESUMO

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by loss of paternal expression of imprinted genes on chromosome 15q11-q13. We established a human induced pluripotent stem cell line (hiPSC), ZIPi021-A, from fibroblasts of a 4-year-old female PWS patient with the subtype of maternal uniparental disomy (mUPD). The generated hiPSC line was transgene-free, expressed pluripotency markers and showed the ability to differentiate into all three germ layers in vitro. The ZIPi021-A hiPSC line could be used as a cellular model for PWS in humans.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transtornos do Neurodesenvolvimento , Síndrome de Prader-Willi , Feminino , Humanos , Pré-Escolar , Síndrome de Prader-Willi/genética , Dissomia Uniparental/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Fibroblastos/metabolismo , Cromossomos Humanos Par 15/genética
2.
Mol Ther Methods Clin Dev ; 26: 84-94, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35795779

RESUMO

Drug-inducible suicide systems may help to minimize risks of human induced pluripotent stem cell (hiPSC) therapies. Recent research challenged the usefulness of such systems since rare drug-resistant subclones were observed. We have introduced a drug-inducible Caspase 9 suicide system (iCASP9) into the AAVS1 safe-harbor locus of hiPSCs. In these cells, apoptosis could be efficiently induced in vitro. After transplantation into mice, drug treatment generally led to rapid elimination of teratomas, but single animals subsequently formed tumor tissue from monoallelic iCASP9 hiPSCs. Very rare drug-resistant subclones of monoallelic iCASP9 hiPSCs appeared in vitro with frequencies of ∼ 3 × 10-8. Besides transgene elimination, presumably via loss of heterozygosity (LoH), silencing via aberrant promoter methylation was identified as a major underlying mechanism. In contrast to monoallelic iCASP9 hiPSCs, no escapees from biallelic iCASP9 cells were observed after treatment of up to 0.8 billion hiPSCs. The highly increased safety level provided by biallelic integration of the iCASP9 system may substantially contribute to the safety level of iPSC-based therapies.

3.
Mol Ther ; 29(8): 2535-2553, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33831558

RESUMO

Cellular therapies based on induced pluripotent stem cells (iPSCs) come out of age and an increasing number of clinical trials applying iPSC-based transplants are ongoing or in preparation. Recent studies, however, demonstrated a high number of small-scale mutations in iPSCs. Although the mutational load in iPSCs seems to be largely derived from their parental cells, it is still unknown whether reprogramming may enrich for individual mutations that could lead to loss of functionality and tumor formation from iPSC derivatives. 30 hiPSC lines were analyzed by whole exome sequencing. High accuracy amplicon sequencing showed that all analyzed small-scale variants pre-existed in their parental cells and that individual mutations present in small subpopulations of parental cells become enriched among hiPSC clones during reprogramming. Among those, putatively actionable driver mutations affect genes related to cell-cycle control, cell death, and pluripotency and may confer a selective advantage during reprogramming. Finally, a short hairpin RNA (shRNA)-based experimental approach was applied to provide additional evidence for the individual impact of such genes on the reprogramming efficiency. In conclusion, we show that enriched mutations in curated onco- and tumor suppressor genes may account for an increased tumor risk and impact the clinical value of patient-derived hiPSCs.


Assuntos
Células Clonais/citologia , Sequenciamento do Exoma/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Neoplasias/genética , Idoso , Ciclo Celular , Morte Celular , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Reprogramação Celular , Células Clonais/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Pluripotentes Induzidas/química , Neoplasias/patologia
4.
Cell ; 184(8): 2084-2102.e19, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765444

RESUMO

The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape. Furthermore, we show that human organoids are larger due to a delay in this transition, associated with differences in interkinetic nuclear migration and cell cycle length. Comparative RNA sequencing (RNA-seq) reveals differences in expression dynamics of cell morphogenesis factors, including ZEB2, a known epithelial-mesenchymal transition regulator. We show that ZEB2 promotes neuroepithelial transition, and its manipulation and downstream signaling leads to acquisition of nonhuman ape architecture in the human context and vice versa, establishing an important role for neuroepithelial cell shape in human brain expansion.


Assuntos
Evolução Biológica , Encéfalo/citologia , Forma Celular/fisiologia , Animais , Encéfalo/metabolismo , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Transição Epitelial-Mesenquimal/genética , Expressão Gênica , Gorilla gorilla , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Organoides/citologia , Organoides/metabolismo , Pan troglodytes , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
5.
Cell Reprogram ; 22(3): 118-133, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32429746

RESUMO

Chimeric pigs harboring organs derived from human stem cells are promising for patient-specific regenerative therapies. Induced pluripotent stem cells (iPSCs) can contribute to all cell types of the fetus, including germline after injection into embryos. However, ethical concerns prohibit testing human iPSCs in chimera assays. Here, we evaluated porcine embryos as hosts for an interspecies chimera assay using iPSCs from either cynomolgus monkeys (cyiPSCs) or mouse (miPSCs). To establish an in vitro culture system compatible for cyiPSCs and porcine embryos, we determined blastocyst development in eight different stem cell media. The highest developmental rates of blastocysts were achieved in Knockout Dulbecco's modified Eagle's medium with 20% knockout serum replacement. We found that cyiPSCs injected into porcine embryos survived in vitro and were mostly located in the trophectoderm (TE). Instead, when miPSCs were injected into porcine embryos, the cells rapidly proliferated. The behavior of chimeras developed in vitro was recapitulated in vivo; cyiPSCs were observed in the TE, but not in the porcine epiblast. However, when miPSCs were injected into in vivo derived porcine embryos, mouse cells were found in both, the epiblast and TE. These results demonstrate that porcine embryos could be useful for evaluating the interspecies chimera-forming ability of iPSCs from different species.


Assuntos
Quimera/embriologia , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Blastocisto , Meios de Cultura , Embrião de Mamíferos , Macaca fascicularis , Camundongos , Especificidade da Espécie , Suínos
6.
Int J Mol Sci ; 21(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260086

RESUMO

Induced pluripotent stem cells (iPSCs) offer great promise for the field of regenerative medicine, and iPSC-derived cells have already been applied in clinical practice. However, potential contamination of effector cells with residual pluripotent cells (e.g., teratoma-initiating cells) or effector cell-associated side effects may limit this approach. This also holds true for iPSC-derived hematopoietic cells. Given the therapeutic benefit of macrophages in different disease entities and the feasibility to derive macrophages from human iPSCs, we established human iPSCs harboring the inducible Caspase-9 (iCasp9) suicide safety switch utilizing transcription activator-like effector nuclease (TALEN)-based designer nuclease technology. Mono- or bi-allelic integration of the iCasp9 gene cassette into the AAVS1 locus showed no effect on the pluripotency of human iPSCs and did not interfere with their differentiation towards macrophages. In both, iCasp9-mono and iCasp9-bi-allelic clones, concentrations of 0.1 nM AP20187 were sufficient to induce apoptosis in more than 98% of iPSCs and their progeny-macrophages. Thus, here we provide evidence that the introduction of the iCasp9 suicide gene into the AAVS1 locus enables the effective clearance of human iPSCs and thereof derived macrophages.


Assuntos
Caspase 9/genética , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/citologia , Caspase 9/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Genes Transgênicos Suicidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/metabolismo , Medicina Regenerativa , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia
8.
Stem Cell Reports ; 13(2): 366-379, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31353227

RESUMO

Aiming at clinical translation, robust directed differentiation of human pluripotent stem cells (hPSCs), preferentially in chemically defined conditions, is a key requirement. Here, feasibility of suspension culture based hPSC-cardiomyocyte (hPSC-CM) production in low-cost, xeno-free media compatible with good manufacturing practice standards is shown. Applying stirred tank bioreactor systems at increasing dimensions, our advanced protocol enables routine production of about 1 million hPSC-CMs/mL, yielding ∼1.3 × 108 CM in 150 mL and ∼4.0 × 108 CMs in 350-500 mL process scale at >90% lineage purity. Process robustness and efficiency is ensured by uninterrupted chemical WNT pathway control at early stages of differentiation and results in the formation of almost exclusively ventricular-like CMs. Modulated WNT pathway regulation also revealed the previously unappreciated role of ROR1/CD13 as superior surrogate markers for predicting cardiac differentiation efficiency as soon as 72 h of differentiation. This monitoring strategy facilitates process upscaling and controlled mass production of hPSC derivatives.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Reatores Biológicos , Antígenos CD13/genética , Antígenos CD13/metabolismo , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Humanos , Mesoderma/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo
9.
Stem Cell Res ; 30: 117-121, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29852468

RESUMO

Caudal-type homeobox 2 (CDX2) transcription factor is an important marker for early trophoblast lineages and intestinal epithelium. Due to its nuclear expression the immunostaining and sorting of viable CDX2pos cells is not possible. In this paper we report the generation and describe key characteristics of a CDX2Venus knock-in reporter hiPSC-cell line (MHHi007-A-1) which can serve as an in vitro tool to study human trophoblast and intestinal differentiation.


Assuntos
Fator de Transcrição CDX2/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular , Feminino , Humanos , Recém-Nascido , Trofoblastos/citologia , Trofoblastos/metabolismo
10.
Stem Cell Res ; 12(3): 622-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24631741

RESUMO

Induced pluripotent stem cells (iPSCs) are regarded as a central tool to understand human biology in health and disease. Similarly, iPSCs from non-human primates should be a central tool to understand human evolution, in particular for assessing the conservation of regulatory networks in iPSC models. Here, we have generated human, gorilla, bonobo and cynomolgus monkey iPSCs and assess their usefulness in such a framework. We show that these cells are well comparable in their differentiation potential and are generally similar to human, cynomolgus and rhesus monkey embryonic stem cells (ESCs). RNA sequencing reveals that expression differences among clones, individuals and stem cell type are all of very similar magnitude within a species. In contrast, expression differences between closely related primate species are three times larger and most genes show significant expression differences among the analyzed species. However, pseudogenes differ more than twice as much, suggesting that evolution of expression levels in primate stem cells is rapid, but constrained. These patterns in pluripotent stem cells are comparable to those found in other tissues except testis. Hence, primate iPSCs reveal insights into general primate gene expression evolution and should provide a rich source to identify conserved and species-specific gene expression patterns for cellular phenotypes.


Assuntos
Evolução Biológica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Perfilação da Expressão Gênica , Humanos , Primatas
11.
Stem Cell Reports ; 2(1): 107-18, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24678453

RESUMO

Genetic engineering of human induced pluripotent stem cells (hiPSCs) via customized designer nucleases has been shown to be significantly more efficient than conventional gene targeting, but still typically depends on the introduction of additional genetic selection elements. In our study, we demonstrate the efficient nonviral and selection-independent gene targeting in human pluripotent stem cells (hPSCs). Our high efficiencies of up to 1.6% of gene-targeted hiPSCs, accompanied by a low background of randomly inserted transgenes, eliminated the need for antibiotic or fluorescence-activated cell sorting selection, and allowed the use of short donor oligonucleotides for footprintless gene editing. Gene-targeted hiPSC clones were established simply by direct PCR screening. This optimized approach allows targeted transgene integration into safe harbor sites for more predictable and robust expression and enables the straightforward generation of disease-corrected, patient-derived iPSC lines for research purposes and, ultimately, for future clinical applications.


Assuntos
Endonucleases/metabolismo , Recombinação Homóloga , Células-Tronco Pluripotentes/metabolismo , Células Cultivadas , Reparo do DNA por Junção de Extremidades , Técnicas de Inativação de Genes , Marcação de Genes , Loci Gênicos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Oligodesoxirribonucleotídeos/metabolismo , Células-Tronco Pluripotentes/citologia , Reação em Cadeia da Polimerase
12.
Cell Reprogram ; 14(6): 471-84, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23194451

RESUMO

Induced pluripotent stem cells (iPSCs) represent a novel cell source for regenerative therapies. Many emerging iPSC-based therapeutic concepts will require preclinical evaluation in suitable large animal models. Among the large animal species frequently used in preclinical efficacy and safety studies, macaques show the highest similarities to humans at physiological, cellular, and molecular levels. We have generated iPSCs from cynomolgus monkeys (Macaca fascicularis) as a segue to regenerative therapy model development in this species. Because typical human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors show poor transduction of simian cells, a simian immunodeficiency virus (SIV)-based vector was chosen for efficient transduction of cynomolgus skin fibroblasts. A corresponding polycistronic vector with codon-optimized reprogramming factors was constructed for reprogramming. Growth characteristics as well as cell and colony morphology of the resulting cynomolgus iPSCs (cyiPSCs) were demonstrated to be almost identical to cynomolgus embryonic stem cells (cyESCs), and cyiPSCs expressed typical pluripotency markers including OCT4, SOX2, and NANOG. Furthermore, differentiation in vivo and in vitro into derivatives of all three germ layers, as well as generation of functional cardiomyocytes, could be demonstrated. Finally, a highly efficient technique for generation of transgenic cyiPSC clones with stable reporter expression in undifferentiated cells as well as differentiated transgenic cyiPSC progeny was developed to enable cell tracking in recipient animals. In conclusion, our data indicate that cyiPSCs represent a valuable cell source for establishment of macaque-based allogeneic and autologous preclinical cell transplantation models for various fields of regenerative medicine.


Assuntos
Vetores Genéticos , Células-Tronco Pluripotentes Induzidas , Vírus da Imunodeficiência Símia , Fatores de Transcrição/biossíntese , Transdução Genética , Animais , Desdiferenciação Celular/genética , Células Cultivadas , HIV-1 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Macaca fascicularis , Fatores de Transcrição/genética
13.
Cell Stem Cell ; 5(4): 434-41, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19796623

RESUMO

Induced pluripotent stem cells (iPSCs) may represent an ideal cell source for future regenerative therapies. A critical issue concerning the clinical use of patient-specific iPSCs is the accumulation of mutations in somatic (stem) cells over an organism's lifetime. Acquired somatic mutations are passed onto iPSCs during reprogramming and may be associated with loss of cellular functions and cancer formation. Here we report the generation of human iPSCs from cord blood (CB) as a juvenescent cell source. CBiPSCs show characteristics typical of embryonic stem cells and can be differentiated into derivatives of all three germ layers, including functional cardiomyocytes. For future therapeutic production of autologous and allogeneic iPSC derivatives, CB could be routinely harvested for public and commercial CB banks without any donor risk. CB could readily become available for pediatric patients and, in particular, for newborns with genetic diseases or congenital malformations.


Assuntos
Sangue Fetal/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J Gene Med ; 10(1): 21-32, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18022932

RESUMO

BACKGROUND: Lentiviral vectors are attractive delivery tools for gene therapy, especially in terminally differentiated target cells. While restriction of gene expression to specific cell populations is of particular importance, highly efficient cell-type-specific gene expression after viral gene transfer so far has been hampered by low levels of transgene expression. METHODS: Addressing this problem, we have integrated the human cytomegalovirus (CMV) immediate-early enhancer into an 'advanced' generation lentiviral vector. Expression cassettes with the reporter gene green fluorescent protein (GFP), combined with the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) under control of a ubiquitous phosphoglycerate kinase (mouse PGK), cardiomyocyte- (human atrial natriuretic factor (ANF), human ventricular myosin light chain (MLC2v)), or type II alveolar epithelial cell (AT-2)-specific human surfactant protein C (SP-C) promoter, were introduced. As insertion of an enhancing element can interfere with the promoter's specificity, expression levels conferred by our enhancer/promoter constructs were evaluated in target and non-target cells. RESULTS: Transduction of target cells with human CMV enhancer containing lentiviral vectors resulted in a multiple-log increase in GFP expression compared to corresponding vectors lacking the human CMV enhancer. In the case of the ANF, the MLC2v, and the SP-C promoters, tissue-specific reporter gene expression in cardiomyocytes and in lung AT-2 cells was maintained, as expression in non-target cells increased only up to 7-fold. CONCLUSIONS: The results of this study indicate that lentiviral vectors with the human CMV enhancer conferring efficient cell-type-specific gene expression may be useful tools for gene therapy purposes or cell tracing, e.g. to analyze stem cell differentiation in transplantation and co-culture settings.


Assuntos
Citomegalovirus/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Vetores Genéticos/genética , Lentivirus/genética , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Células Cultivadas , Células HeLa , Humanos , Lentivirus/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , Proteína C Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transgenes , Vírion/genética , Montagem de Vírus
15.
Hum Gene Ther ; 19(1): 39-52, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18052721

RESUMO

Type II alveolar epithelial (AT2) cell-specific reporter expression has been highly useful in the study of embryology and alveolar regeneration in transgenic mice. Technologies enabling efficient gene transfer and cell type-restricted transgene expression in AT2 cells would allow for correction of AT2 cell-based diseases such as genetic surfactant deficiencies. Moreover, such approaches are urgently required to investigate differentiation of AT2 cells from adult and embryonic stem cells of other species than mouse. Using a human surfactant protein C (SP-C) promoter fragment, we have constructed lentiviral vectors enabling AT2-restricted transgene expression and identification of stem cell-derived AT2 cells. Lung epithelial cell lines M3E3/C3, H441, RLE-6TN, A549, MLE-12, and MLE-15 were characterized at the molecular and ultrastructural levels to identify cell lines useful to assess the cell type specificity of our vector constructs. After transduction, no green fluorescent protein (GFP) expression was observed in nontarget cells including bronchial H441 cells, pulmonary A549 cells, fibroblasts, smooth muscle cells, and endothelial cells. In contrast, and in correlation with endogenous SP-C expression, lentiviral transduction resulted in stable GFP expression in MLE-12 and MLE-15 AT2 cells. In conclusion, we have constructed a lentiviral vector mediating SP-C promoter-dependent GFP expression. Transgene expression strictly corresponds with an AT2 phenotype of the transduced cells. In particular, the generated vector should facilitate local alveolar gene therapy and investigation of alveolar regeneration and stem cell differentiation.


Assuntos
Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Lentivirus/genética , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Proteína C Associada a Surfactante Pulmonar/genética , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Fenótipo , Regiões Promotoras Genéticas , Ratos , Transdução Genética , Transgenes
16.
Stem Cells ; 24(6): 1423-32, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16543489

RESUMO

Embryonic stem cells (ESCs) from mice and humans (hESCs) have been shown to be able to efficiently differentiate toward cardiomyocytes (CMs). Because murine ESCs and hESCs do not allow for establishment of pre-clinical allogeneic transplantation models, the aim of our study was to generate functional CMs from rhesus monkey ESCs (rESCs). Although formation of ectodermal and neuronal/glial cells appears to be the default pathway of the rESC line R366.4, we were able to change this commitment and to direct generation of endodermal/mesodermal cells and further differentiation toward CMs. Differentiation of rESCs resulted in an average of 18% of spontaneously contracting embryoid bodies (EBs) from rESCs. Semiquantitative reverse transcription-polymerase chain reaction analyses demonstrated expression of marker genes typical for endoderm, mesoderm, cardiac mesoderm, and CMs, including brachyury, goosecoid, Tbx-5, Tbx-20, Mesp1, Nkx2.5, GATA-4, FOG-2, Mlc2a, MLC2v, ANF, and alpha-MHC in rESC-derived CMs. Immunohistological and ultrastructural studies showed expression of CM-typical proteins, including sarcomeric actinin, troponin T, titin, connexin 43, and cross-striated muscle fibrils. Electrophysiological studies by means of multielectrode arrays revealed evidence of functionality, electrical coupling, and beta-adrenergic signaling of the generated CMs. This is the first study demonstrating generation of functional CMs derived from rESCs. In contrast to hESCs, rESCs allow for establishment of pre-clinical allogeneic transplantation models. Moreover, rESC-derived CMs represent a cell source for the development of high-throughput assays for cardiac safety pharmacology.


Assuntos
Miócitos Cardíacos/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Células Cultivadas , Eletrofisiologia , Embrião de Mamíferos/citologia , Expressão Gênica , Humanos , Macaca mulatta , Camundongos , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Miofibrilas/ultraestrutura , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA