Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neurotoxicology ; 66: 128-137, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625197

RESUMO

Harmful blooms of domoic acid (DA)-producing algae are a problem in oceans worldwide. DA is a potent glutamate receptor agonist that can cause status epilepticus and in survivors, temporal lobe epilepsy. In mice, one-time low-dose in utero exposure to DA was reported to cause hippocampal damage and epileptiform activity, leading to the hypothesis that unrecognized exposure to DA from contaminated seafood in pregnant women can damage the fetal hippocampus and initiate temporal lobe epileptogenesis. However, development of epilepsy (i.e., spontaneous recurrent seizures) has not been tested. In the present study, long-term seizure monitoring and histology was used to test for temporal lobe epilepsy following prenatal exposure to DA. In Experiment One, the previous study's in utero DA treatment protocol was replicated, including use of the CD-1 mouse strain. Afterward, mice were video-monitored for convulsive seizures from 2 to 6 months old. None of the CD-1 mice treated in utero with vehicle or DA was observed to experience spontaneous convulsive seizures. After seizure monitoring, mice were evaluated for pathological evidence of temporal lobe epilepsy. None of the mice treated in utero with DA displayed the hilar neuron loss that occurs in patients with temporal lobe epilepsy and in the mouse pilocarpine model of temporal lobe epilepsy. In Experiment Two, a higher dose of DA was administered to pregnant FVB mice. FVB mice were tested as a potentially more sensitive strain, because they have a lower seizure threshold, and some females spontaneously develop epilepsy. Female offspring were monitored with continuous video and telemetric bilateral hippocampal local field potential recording at 1-11 months old. A similar proportion of vehicle- and DA-treated female FVB mice spontaneously developed epilepsy, beginning in the fourth month of life. Average seizure frequency and duration were similar in both groups. Seizure frequency was lower than that of positive-control pilocarpine-treated mice, but seizure duration was similar. None of the mice treated in utero with vehicle or DA displayed hilar neuron loss or intense mossy fiber sprouting, a form of aberrant synaptic reorganization that develops in patients with temporal lobe epilepsy and in pilocarpine-treated mice. FVB mice that developed epilepsy (vehicle- and DA-treated) displayed mild mossy fiber sprouting. Results of this study suggest that a single subconvulsive dose of DA at mid-gestation does not cause temporal lobe epilepsy in mice.


Assuntos
Epilepsia do Lobo Temporal/induzido quimicamente , Hipocampo/efeitos dos fármacos , Ácido Caínico/análogos & derivados , Toxinas Marinhas/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Feminino , Idade Gestacional , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Ácido Caínico/administração & dosagem , Ácido Caínico/toxicidade , Toxinas Marinhas/administração & dosagem , Camundongos , Gravidez
2.
Cell Rep ; 20(9): 2156-2168, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28854365

RESUMO

Although Netos are considered auxiliary subunits critical for kainate receptor (KAR) function, direct evidence for their regulation of native KARs is limited. Because Neto KAR regulation is GluK subunit/Neto isoform specific, such regulation must be determined in cell-type-specific contexts. We demonstrate Neto1/2 expression in somatostatin (SOM)-, cholecystokinin/cannabinoid receptor 1 (CCK/CB1)-, and parvalbumin (PV)-containing interneurons. KAR-mediated excitation of these interneurons is contingent upon Neto1 because kainate yields comparable effects in Neto2 knockouts and wild-types but fails to excite interneurons or recruit inhibition in Neto1 knockouts. In contrast, presynaptic KARs in CCK/CB1 interneurons are dually regulated by both Neto1 and Neto2. Neto association promotes tonic presynaptic KAR activation, dampening CCK/CB1 interneuron output, and loss of this brake in Neto mutants profoundly increases CCK/CB1 interneuron-mediated inhibition. Our results confirm that Neto1 regulates endogenous somatodendritic KARs in diverse interneurons and demonstrate Neto regulation of presynaptic KARs in mature inhibitory presynaptic terminals.


Assuntos
Dendritos/metabolismo , Interneurônios/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana/metabolismo , Rede Nervosa/metabolismo , Inibição Neural , Receptores de Ácido Caínico/metabolismo , Receptores Pré-Sinápticos/metabolismo , Animais , Ritmo Gama , Ativação do Canal Iônico , Ácido Caínico , Camundongos Knockout , Camundongos Mutantes , Mutação/genética , Regiões Promotoras Genéticas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de N-Metil-D-Aspartato
4.
Neuron ; 85(6): 1257-72, 2015 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-25754824

RESUMO

Circuit computation requires precision in the timing, extent, and synchrony of principal cell (PC) firing that is largely enforced by parvalbumin-expressing, fast-spiking interneurons (PVFSIs). To reliably coordinate network activity, PVFSIs exhibit specialized synaptic and membrane properties that promote efficient afferent recruitment such as expression of high-conductance, rapidly gating, GluA4-containing AMPA receptors (AMPARs). We found that PVFSIs upregulate GluA4 during the second postnatal week coincident with increases in the AMPAR clustering proteins NPTX2 and NPTXR. Moreover, GluA4 is dramatically reduced in NPTX2(-/-)/NPTXR(-/-) mice with consequent reductions in PVFSI AMPAR function. Early postnatal NPTX2(-/-)/NPTXR(-/-) mice exhibit delayed circuit maturation with a prolonged critical period permissive for giant depolarizing potentials. Juvenile NPTX2(-/-)/NPTXR(-/-) mice display reduced feedforward inhibition yielding a circuit deficient in rhythmogenesis and prone to epileptiform discharges. Our findings demonstrate an essential role for NPTXs in controlling network dynamics highlighting potential therapeutic targets for disorders with inhibition/excitation imbalances such as schizophrenia.


Assuntos
Potenciais de Ação/fisiologia , Proteína C-Reativa/metabolismo , Interneurônios/metabolismo , Rede Nervosa/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/metabolismo , Sinapses/metabolismo , Animais , Animais Recém-Nascidos , Proteína C-Reativa/deficiência , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência
5.
J Neurosci ; 34(2): 622-8, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24403160

RESUMO

Neto1 and Neto2 auxiliary subunits coassemble with NMDA receptors (NMDARs) and kainate receptors (KARs) to modulate their function. In the hippocampus, Neto1 enhances the amplitude and prolongs the kinetics of KAR-mediated currents at mossy fiber (MF)-CA3 pyramidal cell synapses. However, whether Neto1 trafficks KARs to synapses or simply alters channel properties is unresolved. Therefore, postembedding electron microscopy was performed to investigate the localization of GluK2/3 subunits at MF-CA3 synapses in Neto-null mice. Postsynaptic GluK2/3 Immunogold labeling was substantially reduced in Neto-null mice compared with wild types. Moreover, spontaneous KAR-mediated synaptic currents and metabotropic KAR signaling were absent in CA3 pyramidal cells of Neto-null mice. A similar loss of ionotropic and metabotropic KAR function was observed in Neto1, but not Neto2, single knock-out mice, specifically implicating Neto1 in regulating CA3 pyramidal cell KAR localization and function. Additional controversy pertains to the role of Neto proteins in modulating synaptic NMDARs. While Immunogold labeling for GluN2A at MF-CA3 synapses was comparable between wild-type and Neto-null mice, labeling for postsynaptic GluN2B was robustly increased in Neto-null mice. Accordingly, NMDAR-mediated currents at MF-CA3 synapses exhibited increased sensitivity to a GluN2B-selective antagonist in Neto1 knockouts relative to wild types. Thus, despite preservation of the overall MF-CA3 synaptic NMDAR-mediated current, loss of Neto1 alters NMDAR subunit composition. These results confirm that Neto protein interactions regulate synaptic localization of KAR and NMDAR subunits at MF-CA3 synapses, with implications for both ionotropic and metabotropic glutamatergic recruitment of the CA3 network.


Assuntos
Região CA3 Hipocampal/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas de Membrana/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Receptores de Ácido Caínico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Proteínas Relacionadas a Receptor de LDL , Masculino , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Sinapses/metabolismo
6.
J Neurosci ; 30(26): 8993-9006, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20592220

RESUMO

Perisomatic inhibition from basket cells plays an important role in regulating pyramidal cell output. Two major subclasses of CA1 basket cells can be identified based on their expression of either cholecystokinin (CCK) or parvalbumin. This study examined their fates in the mouse pilocarpine model of temporal lobe epilepsy. Overall, immunohistochemical labeling of GABAergic boutons in the pyramidal cell layer of CA1 was preserved in the mouse model. However, CCK-labeled boutons in this layer were chronically reduced, whereas parvalbumin-containing boutons were conserved. Immunohistochemistry for cannabinoid receptor 1 (CB(1)), another marker for CCK-containing basket cells, also labeled fewer boutons in pilocarpine-treated mice. Hours after status epilepticus, electron microscopy revealed dark degenerating terminals in the pyramidal cell layer with lingering CCK and CB(1) immunoreactivity. In mice with recurrent seizures, carbachol-induced enhancement of spontaneous IPSCs (sIPSCs) originating from CCK-containing basket cells was accordingly reduced in CA1 pyramidal cells. By suppressing sIPSCs from CCK-expressing basket cells, a CB(1) agonist reverted the stimulatory effects of carbachol in naive mice to levels comparable with those observed in cells from epileptic mice. The agatoxin-sensitive component of CA1 pyramidal cell sIPSCs from parvalbumin-containing interneurons was increased in pilocarpine-treated mice, and miniature IPSCs were reduced, paralleling the decrease in CCK-labeled terminals. Altogether, the findings are consistent with selective reduction in perisomatic CA1 pyramidal cell innervation from CCK-expressing basket cells in mice with spontaneous seizures and a greater reliance on persisting parvalbumin innervation. This differential alteration in inhibition may contribute to the vulnerability of the network to seizure activity.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Colecistocinina/metabolismo , Epilepsia do Lobo Temporal/fisiopatologia , Neurônios/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/ultraestrutura , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/patologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Camundongos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Vias Neurais/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Parvalbuminas/metabolismo , Pilocarpina , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiopatologia , Células Piramidais/ultraestrutura , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologia , Ácido gama-Aminobutírico/metabolismo
7.
Water Environ Res ; 80(6): 490-6, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18686924

RESUMO

Dimensionally stable anodes (DSAs) demonstrate potential for the electrochemical treatment of industrial waste streams and disinfection of effluent. Oxidation by laboratory-prepared tin oxide DSAs was compared with that of commercially available ruthenium oxide, iridium oxide, and mixed metal oxide DSAs, using hexanol as a probe molecule. The performance of the four anodes was similar in two-chamber reactors, in which the anode cell was separated from the cathode cell by a Nafion membrane, which allows transmission of current between the chambers, but not passage of chemical constituents. The anodes were then evaluated in single-cell reactors, which are more representative of potential treatment and disinfection applications. However, in the single-cell reactors, the tin oxide anodes were significantly more effective at oxidation and generated higher quality cyclic voltammograms than the other DSAs. These results suggest that tin oxide anodes have greater potential than the three commercially available DSAs tested for industrial waste stream treatment and effluent disinfection.


Assuntos
Eletrodos , Compostos de Estanho/química , Comércio , Concentração de Íons de Hidrogênio , Oxirredução , Oxigênio/química
8.
J Neurosci ; 23(9): 3588-96, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12736329

RESUMO

Little is known about the expression and possible functions of unopposed gap junction hemichannels in the brain. Emerging evidence suggests that gap junction hemichannels can act as stand-alone functional channels in astrocytes. With immunocytochemistry, dye uptake, and HPLC measurements, we show that astrocytes in vitro express functional hemichannels that can mediate robust efflux of glutamate and aspartate. Functional hemichannels were confirmed by passage of extracellular lucifer yellow (LY) into astrocytes in nominal divalent cation-free solution (DCFS) and the ability to block this passage with gap junction blocking agents. Glutamate/aspartate release (or LY loading) in DCFS was blocked by multivalent cations (Ca2+, Ba2+, Sr2+, Mg2+, and La3+) and by gap junction blocking agents (carbenoxolone, octanol, heptanol, flufenamic acid, and 18alpha-glycyrrhetinic acid) with affinities close to those reported for blockade of gap junction intercellular communication. Glutamate efflux via hemichannels was also accompanied by greatly reduced glutamate uptake. Glutamate release in DCFS, however, was not significantly mediated by reversal of the glutamate transporter: release did not saturate and was not blocked by glutamate transporter blockers. Control experiments in DCFS precluded glutamate release by volume-sensitive anion channels, P2X7 purinergic receptor pores, or general purinergic receptor activation. Blocking intracellular Ca2+ mobilization by BAPTA-AM or thapsigargin did not inhibit glutamate release in DCFS. Divalent cation removal also induced glutamate release from intact CNS white matter (acutely isolated optic nerve) that was blocked by carbenoxolone, suggesting the existence of functional hemichannels in situ. Our results indicated that astrocyte hemichannels could influence CNS levels of extracellular glutamate with implications for normal and pathological brain function.


Assuntos
Astrócitos/metabolismo , Junções Comunicantes/metabolismo , Ácido Glutâmico/metabolismo , Ácido Glicirretínico/análogos & derivados , Trifosfato de Adenosina/metabolismo , Sistema X-AG de Transporte de Aminoácidos/antagonistas & inibidores , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Ácido Aspártico/metabolismo , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Cálcio/metabolismo , Carbenoxolona/farmacologia , Cátions Bivalentes/farmacologia , Células Cultivadas , Quelantes/farmacologia , Conexina 43/metabolismo , Ácido Flufenâmico/farmacologia , Corantes Fluorescentes/farmacocinética , Junções Comunicantes/efeitos dos fármacos , Ácido Glutâmico/farmacocinética , Ácido Glicirretínico/farmacologia , Heptanol/farmacologia , Imuno-Histoquímica , Lantânio/farmacologia , Octanóis/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA