Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(3): 2009-2020, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007420

RESUMO

Anthropogenic land use has increased nutrient concentrations and altered dissolved organic matter (DOM) character and its bioavailability. Despite widespread recognition that DOM character and its reactivity can vary temporally, the relative influence of land use and stream order on DOM characteristics is poorly understood across seasons and the entire flow regime. We examined DOM character and 28-day bioavailable dissolved organic carbon (BDOC) across a river network to determine the relative roles of land use and stream order in driving variability in DOM character and bioavailability throughout the year. DOM in 1st-order streams was distinct from higher stream orders with lower DOC concentrations, less aromatic (specific ultraviolet absorbance at 254 nm (SUVA254)), more autochthonous (fluorescence index), and more recently produced (ß/α) DOM. Across all months, variability in DOM character was primarily explained by land use, rather than stream order or season. Land use and stream order explained the most DOM variation in transitional and winter months and the least during dry months. BDOC was greater in watersheds with less aromatic (SUVA254) and more recent allochthonous DOM (ß/α) and more development and impervious surface. With continued development, the bioavailability of DOM in the smallest and most impacted watersheds is expected to increase.


Assuntos
Matéria Orgânica Dissolvida , Rios , Estações do Ano
2.
ISME J ; 16(3): 717-725, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34580429

RESUMO

When leaves fall in rivers, microbial decomposition commences within hours. Microbial assemblages comprising hundreds of species of fungi and bacteria can vary with stream conditions, leaf litter species, and decomposition stage. In terrestrial ecosystems, fungi and bacteria that enter soils with dead leaves often play prominent roles in decomposition, but their role in aquatic decomposition is less known. Here, we test whether fungi and bacteria that enter streams on senesced leaves are growing during decomposition and compare their abundances and growth to bacteria and fungi that colonize leaves in the water. We employ quantitative stable isotope probing to identify growing microbes across four leaf litter species and two decomposition times. We find that most of the growing fungal species on decomposing leaves enter the water with the leaf, whereas most growing bacteria colonize from the water column. Results indicate that the majority of bacteria found on litter are growing, whereas the majority of fungi are dormant. Both bacterial and fungal assemblages differed with leaf type on the dried leaves and throughout decomposition. This research demonstrates the importance of fungal species that enter with the leaf on aquatic decomposition and the prominence of bacteria that colonize decomposing leaves in the water.


Assuntos
Ecossistema , Rios , Fungos/genética , Folhas de Planta/microbiologia , Rios/microbiologia , Água
3.
Glob Chang Biol ; 28(1): 98-114, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34706120

RESUMO

Dissolved organic carbon (DOC) and nitrogen (DON) are important energy and nutrient sources for aquatic ecosystems. In many northern temperate, freshwater systems DOC has increased in the past 50 years. Less is known about how changes in DOC may vary across latitudes, and whether changes in DON track those of DOC. Here, we present long-term DOC and DON data from 74 streams distributed across seven sites in biomes ranging from the tropics to northern boreal forests with varying histories of atmospheric acid deposition. For each stream, we examined the temporal trends of DOC and DON concentrations and DOC:DON molar ratios. While some sites displayed consistent positive or negative trends in stream DOC and DON concentrations, changes in direction or magnitude were inconsistent at regional or local scales. DON trends did not always track those of DOC, though DOC:DON ratios increased over time for ~30% of streams. Our results indicate that the dissolved organic matter (DOM) pool is experiencing fundamental changes due to the recovery from atmospheric acid deposition. Changes in DOC:DON stoichiometry point to a shifting energy-nutrient balance in many aquatic ecosystems. Sustained changes in the character of DOM can have major implications for stream metabolism, biogeochemical processes, food webs, and drinking water quality (including disinfection by-products). Understanding regional and global variation in DOC and DON concentrations is important for developing realistic models and watershed management protocols to effectively target mitigation efforts aimed at bringing DOM flux and nutrient enrichment under control.


Assuntos
Matéria Orgânica Dissolvida , Rios , Carbono , Ecossistema , Nitrogênio/análise
4.
J Vis Exp ; (116)2016 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-27842377

RESUMO

Dissolved organic matter (DOM) is a highly diverse mixture of molecules providing one of the largest sources of energy and nutrients to stream ecosystems. Yet the in situ study of DOM is difficult as the molecular complexity of the DOM pool cannot be easily reproduced for experimental purposes. Nutrient additions to streams however, have been shown to repeatedly alter the in situ and ambient DOM pool. Here we demonstrate an easily replicable field-based method for manipulating the ambient pool of DOM at the ecosystem scale. During nutrient pulse experiments changes in the concentration of both dissolved organic carbon and dissolved organic nitrogen can be examined across a wide-range of nutrient concentrations. This method allows researchers to examine the controls on the DOM pool and make inferences regarding the role and function that certain fractions of the DOM pool play within ecosystems. We advocate the use of this method as a technique to help develop a deeper understanding of DOM biogeochemistry and how it interacts with nutrients. With further development this method may help elucidate the dynamics of DOM in other ecosystems.


Assuntos
Ecossistema , Rios , Carbono , Modelos Teóricos , Nitrogênio , Compostos Orgânicos
5.
Microb Ecol ; 71(4): 825-34, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26879940

RESUMO

Foliar chemistry influences leaf decomposition, but little is known about how litter chemistry affects the assemblage of bacterial communities during decomposition. Here we examined relationships between initial litter chemistry and the composition of the bacterial community in a stream ecosystem. We incubated replicated genotypes of Populus fremontii and P. angustifolia leaf litter that differ in percent tannin and lignin, then followed changes in bacterial community composition during 28 days of decomposition using 16S rRNA gene-based pyrosequencing. Using a nested experimental design, the majority of variation in bacterial community composition was explained by time (i.e., harvest day) (R(2) = 0.50). Plant species, nested within harvest date, explained a significant but smaller proportion of the variation (R(2) = 0.03). Significant differences in community composition between leaf species were apparent at day 14, but no significant differences existed among genotypes. Foliar chemistry correlated significantly with community composition at day 14 (r = 0.46) indicating that leaf litter with more similar phytochemistry harbor bacterial communities that are alike. Bacteroidetes and ß-proteobacteria dominated the bacterial assemblage on decomposing leaves, and Verrucomicrobia and α- and δ-proteobacteria became more abundant over time. After 14 days, bacterial diversity diverged significantly between leaf litter types with fast-decomposing P. fremontii hosting greater richness than slowly decomposing P. angustifolia; however, differences were no longer present after 28 days in the stream. Leaf litter tannin, lignin, and lignin: N ratios all correlated negatively with diversity. This work shows that the bacterial community on decomposing leaves in streams changes rapidly over time, influenced by leaf species via differences in genotype-level foliar chemistry.


Assuntos
Bactérias/classificação , Ecossistema , Plantas/química , Plantas/microbiologia , Rios/química , Rios/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , DNA Bacteriano/genética , Lignina/química , Consórcios Microbianos , Filogenia , Folhas de Planta/química , Folhas de Planta/microbiologia , Microbiologia do Solo , Árvores , Utah , Microbiologia da Água
6.
New Phytol ; 191(1): 19-36, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21631507

RESUMO

Genes and their expression levels in individual species can structure whole communities and affect ecosystem processes. Although much has been written about community and ecosystem phenotypes with a few model systems, such as poplar and goldenrod, here we explore the potential application of a community genetics approach with systems involving invasive species, climate change and pollution. We argue that community genetics can reveal patterns and processes that otherwise might remain undetected. To further facilitate the community genetics or genes-to-ecosystem concept, we propose four community genetics postulates that allow for the conclusion of a causal relationship between the gene and its effect on the ecosystem. Although most current studies do not satisfy these criteria completely, several come close and, in so doing, begin to provide a genetic-based understanding of communities and ecosystems, as well as a sound basis for conservation and management practices.


Assuntos
Ecossistema , Plantas/genética , Animais , Respiração Celular , Mudança Climática , Poluição Ambiental , Feminino , Peixes/genética , Peixes/fisiologia , Expressão Gênica/efeitos dos fármacos , Haplótipos , Humanos , Espécies Introduzidas , Masculino , Plantas/metabolismo , Dinâmica Populacional , Sciuridae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA