RESUMO
BACKGROUND: Maternal psychological distress during pregnancy can negatively impact fetal development, resulting in long-lasting consequences for the offspring. These effects show a sex bias. The mechanisms whereby prenatal stress induces functional and/or structural changes in the placental-fetal unit remain poorly understood. Maternal circulating small extracellular vesicles (sEVs) are good candidates to act as "stress signals" in mother-to-fetus communication. Using a repetitive restraint-based rat model of prenatal stress, we examined circulating maternal sEVs under stress conditions and tested whether they could target placental-fetal tissues. RESULTS: Our mild chronic maternal stress during pregnancy paradigm induced anhedonic-like behavior in pregnant dams and led to intrauterine growth restriction (IUGR), particularly in male fetuses and placentas. The concentration and cargo of maternal circulating sEVs changed under stress conditions. Specifically, there was a significant reduction in neuron-enriched proteins and a significant increase in astrocyte-enriched proteins in blood-borne sEVs from stressed dams. To study the effect of repetitive restraint stress on the biodistribution of maternal circulating sEVs in the fetoplacental unit, sEVs from pregnant dams exposed to stress or control protocol were labeled with DiR fluorescent die and injected into pregnant females previously exposed to control or stress protocol. Remarkably, maternal circulating sEVs target placental/fetal tissues and, under stress conditions, fetal tissues are more receptive to sEVs. CONCLUSION: Our results suggest that maternal circulating sEVs can act as novel mediators/modulators of mother-to-fetus stress communication. Further studies are needed to identify placental/fetal cellular targets of maternal sEVs and characterize their contribution to stress-induced sex-specific placental and fetal changes.
Assuntos
Vesículas Extracelulares , Placenta , Estresse Psicológico , Animais , Feminino , Gravidez , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/fisiologia , Placenta/metabolismo , Masculino , Feto , Ratos , Retardo do Crescimento Fetal/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças , Troca Materno-Fetal/fisiologiaRESUMO
Chronic stress can trigger several pathologies including mood disorders for which no clear diagnostic molecular markers have been established yet. Attractive biomarker sources are extracellular vesicles (EVs). Evs are released by cells in health and disease and contain genetic material, proteins and lipids characteristic of the cell state. Here we show that Evs recovered from the blood of animals exposed to a repeated interrupted stress protocol (RIS) have a different protein profile compared to those obtained from control animals. Proteomic analysis indicated that proteins differentially present in bulk serum Evs from stressed animals were implicated in metabolic and inflammatory pathways and several of them were previously related to psychiatric disorders. Interestingly, these serum Evs carry brain-enriched proteins including the stress-responsive neuronal protein M6a. Then, we used an in-utero electroporation strategy to selectively overexpress M6a-GFP in brain neurons and found that M6a-GFP could also be detected in bulk serum Evs suggesting a neuronal origin. Finally, to determine if these Evs could have functional consequences, we administered Evs from control and RIS animals intranasally to naïve mice. Animals receiving stress EVs showed changes in behavior and brain M6a levels similar to those observed in physically stressed animals. Such changes could therefore be attributed, or at least in part, to EV protein transfer. Altogether these findings show that EVs may participate in stress signaling and propose proteins carried by EVs as a valuable source of biomarkers for stress-induced diseases.
Assuntos
Vesículas Extracelulares , Proteoma , Estresse Psicológico , Animais , Vesículas Extracelulares/metabolismo , Proteoma/metabolismo , Camundongos , Estresse Psicológico/sangue , Estresse Psicológico/metabolismo , Masculino , Comportamento Animal , Encéfalo/metabolismo , Proteômica/métodos , Neurônios/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Fluoxetine, the prototypical selective serotonin reuptake inhibitor (SSRI), is widely used to treat major depressive disorder (MDD) and a variety of other central nervous system conditions, primarily due to its established clinical safety profile. Although its efficacy in treating depression is well-recognized, the impact of fluoxetine on cognitive functions remains inconsistent and elusive. In this review, we first examine the well-substantiated biological mechanisms underlying fluoxetine's antidepressant effects, which include serotonin reuptake inhibition and activation of TrkB receptors-key to brain-derived neurotrophic factor (BDNF) signaling. Subsequently, we delve into the cognitive side effects observed in both preclinical and clinical studies, affecting domains such as memory, attention, and executive functions. While certain studies indicate cognitive improvements in patients with underlying disorders, there is also evidence of negative effects, influenced by variables like gender, duration of treatment, age, disease pathology, and the specifics of cognitive testing. Significantly, the negative cognitive outcomes reported in preclinical research often involve healthy, non-diseased animals. This review underscores the necessity for heightened caution in fluoxetine prescription and further investigation into its potentially detrimental cognitive effects, even when used prophylactically.
RESUMO
Methadone is a synthetic long-acting opioid that is increasingly used in the replacement therapy of opioid-addicted patients, including pregnant women. However, methadone therapy in this population poses challenges, as it induces cognitive and behavioral impairments in infants exposed to this opioid during prenatal development. In animal models, prenatal methadone exposure results in detrimental consequences to the central nervous system, such as: (i) increased neuronal apoptosis; (ii) disruption of oligodendrocyte maturation and increased apoptosis and (iii) increased microglia and astrocyte activation. However, it remains unclear whether these deleterious effects result from a direct effect of methadone on brain cells. Therefore, our goal was to uncover the impact of methadone on single brain cell types in vitro. Primary cultures of rat neurons, oligodendrocytes, microglia, and astrocytes were treated for three days with 10 µM methadone to emulate a chronic administration. Apoptotic neurons were identified by cleaved caspase-3 detection, and synaptic density was assessed by the juxtaposition of presynaptic and postsynaptic markers. Apoptosis of oligodendrocyte precursors was determined by cleaved caspase-3 detection. Oligodendrocyte myelination was assessed by immunofluorescence, while microglia and astrocyte proinflammatory activation were assessed by both immunofluorescence and RT-qPCR. Methadone treatment increased neuronal apoptosis and reduced synaptic density. Furthermore, it led to increased oligodendrocyte apoptosis and a reduction in the myelinating capacity of these cells, and promoted the proinflammatory activation of microglia and astrocytes. We showed that methadone, the most widely used drug in opioid replacement therapy for pregnant women with opioid addiction, directly impairs brain cells in vitro, highlighting the need for developing alternative therapies to address opioid addiction in this population.
Assuntos
Apoptose , Astrócitos , Metadona , Microglia , Neurônios , Oligodendroglia , Metadona/farmacologia , Animais , Ratos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Células Cultivadas , Feminino , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Gravidez , Analgésicos Opioides/farmacologia , Ratos Sprague-DawleyRESUMO
Aging compromises brain function leading to cognitive decline. A cyclic ketogenic diet (KD) improves memory in aged mice after long-term administration; however, short-term effects later in life and the molecular mechanisms that govern such changes remain unclear. Here, we explore the impact of a short-term KD treatment starting at elderly stage on brain function of aged mice. Behavioral testing and long-term potentiation (LTP) recordings reveal that KD improves working memory and hippocampal LTP. Furthermore, the synaptosome proteome of aged mice fed a KD long-term evidence changes predominantly at the presynaptic compartment associated to the protein kinase A (PKA) signaling pathway. These findings were corroborated in vivo by western blot analysis, with high BDNF abundance and PKA substrate phosphorylation. Overall, we show that a KD modifies brain function even when it is administered later in life and recapitulates molecular features of long-term administration, including the PKA signaling pathway, thus promoting synaptic plasticity at advanced age.
Assuntos
Envelhecimento , Proteínas Quinases Dependentes de AMP Cíclico , Dieta Cetogênica , Potenciação de Longa Duração , Memória , Proteoma , Transdução de Sinais , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Dieta Cetogênica/métodos , Proteoma/metabolismo , Camundongos , Masculino , Memória/fisiologia , Potenciação de Longa Duração/fisiologia , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Sinapses/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Plasticidade Neuronal/fisiologia , FosforilaçãoRESUMO
Emerging evidence highlights the relevance of the protein post-translational modification by SUMO (Small Ubiquitin-like Modifier) in the central nervous system for modulating cognition and plasticity in health and disease. In these processes, astrocyte-to-neuron crosstalk mediated by extracellular vesicles (EVs) plays a yet poorly understood role. Small EVs (sEVs), including microvesicles and exosomes, contain a molecular cargo of lipids, proteins, and nucleic acids that define their biological effect on target cells. Here, we investigated whether SUMOylation globally impacts the sEV protein cargo. For this, sEVs were isolated from primary cultures of astrocytes by ultracentrifugation or using a commercial sEV isolation kit. SUMO levels were regulated: 1) via plasmids that over-express SUMO, or 2) via experimental conditions that increase SUMOylation, i.e., by using the stress hormone corticosterone, or 3) via the SUMOylation inhibitor 2-D08 (2',3',4'-trihydroxy-flavone, 2-(2,3,4-Trihydroxyphenyl)-4H-1-Benzopyran-4-one). Corticosterone and 2-D08 had opposing effects on the number of sEVs and on their protein cargo. Proteomic analysis showed that increased SUMOylation in corticosterone-treated or plasmid-transfected astrocytes increased the presence of proteins related to cell division, transcription, and protein translation in the derived sEVs. When sEVs derived from corticosterone-treated astrocytes were transferred to neurons to assess their impact on protein synthesis using the fluorescence non-canonical amino acid tagging assay (FUNCAT), we detected an increase in protein synthesis, while sEVs from 2-D08-treated astrocytes had no effect. Our results show that SUMO conjugation plays an important role in the modulation of the proteome of astrocyte-derived sEVs with a potential functional impact on neurons.
Assuntos
Vesículas Extracelulares , Proteoma , Proteoma/metabolismo , Astrócitos/metabolismo , Sumoilação , Proteômica , Corticosterona/farmacologia , Vesículas Extracelulares/metabolismo , Neurônios/metabolismo , Dendritos/metabolismoRESUMO
Life stressors can wreak havoc on our health, contributing to mood disorders like major depressive disorder (MDD), a widespread and debilitating condition. Unfortunately, current treatments and diagnostic strategies fall short of addressing these disorders, highlighting the need for new approaches. In this regard, the relationship between MDD, brain inflammation (neuroinflammation), and systemic inflammation in the body may offer novel insights. Recent research has uncovered the crucial role of astrocytes in coordinating the inflammatory response through the release of extracellular vesicles (ADEVs) during different neuroinflammatory conditions. While the contribution of ADEVs to stress and MDD remains largely unexplored, their potential to modulate immune cells and contribute to MDD pathogenesis is significant. In this article, we delve into the immunomodulatory role of ADEVs, their potential impact on peripheral immune cells, and how their microRNA (miRNA) landscape may hold the key to controlling immune cell activity. Together, these mechanisms may constitute an opportunity to develop novel therapeutic pharmacological approaches to tackle mood disorders.
Assuntos
Transtorno Depressivo Maior , Vesículas Extracelulares , Humanos , Transtornos do Humor , Astrócitos , Transtorno Depressivo Maior/patologia , Sistema Imunitário , Vesículas Extracelulares/genéticaRESUMO
Background: The M105I point mutation in α-SNAP (Soluble N-ethylmaleimide-sensitive factor attachment protein-alpha) leads in mice to a complex phenotype known as hyh (hydrocephalus with hop gait), characterized by cortical malformation and hydrocephalus, among other neuropathological features. Studies performed by our laboratory and others support that the hyh phenotype is triggered by a primary alteration in embryonic neural stem/progenitor cells (NSPCs) that leads to a disruption of the ventricular and subventricular zones (VZ/SVZ) during the neurogenic period. Besides the canonical role of α-SNAP in SNARE-mediated intracellular membrane fusion dynamics, it also negatively modulates AMP-activated protein kinase (AMPK) activity. AMPK is a conserved metabolic sensor associated with the proliferation/differentiation balance in NSPCs. Methods: Brain samples from hyh mutant mice (hydrocephalus with hop gait) (B6C3Fe-a/a-Napahyh/J) were analyzed by light microscopy, immunofluorescence, and Western blot at different developmental stages. In addition, NSPCs derived from WT and hyh mutant mice were cultured as neurospheres for in vitro characterization and pharmacological assays. BrdU labeling was used to assess proliferative activity in situ and in vitro. Pharmacological modulation of AMPK was performed using Compound C (AMPK inhibitor) and AICAR (AMPK activator). Results: α-SNAP was preferentially expressed in the brain, showing variations in the levels of α-SNAP protein in different brain regions and developmental stages. NSPCs from hyh mice (hyh-NSPCs) displayed reduced levels of α-SNAP and increased levels of phosphorylated AMPKα (pAMPKαThr172), which were associated with a reduction in their proliferative activity and a preferential commitment with the neuronal lineage. Interestingly, pharmacological inhibition of AMPK in hyh-NSPCs increased proliferative activity and completely abolished the increased generation of neurons. Conversely, AICAR-mediated activation of AMPK in WT-NSPCs reduced proliferation and boosted neuronal differentiation. Discussion: Our findings support that α-SNAP regulates AMPK signaling in NSPCs, further modulating their neurogenic capacity. The naturally occurring M105I mutation of α-SNAP provokes an AMPK overactivation in NSPCs, thus connecting the α-SNAP/AMPK axis with the etiopathogenesis and neuropathology of the hyh phenotype.
RESUMO
The hippocampal formation plays a central role in the development of temporal lobe epilepsy (TLE), a disease characterized by recurrent, unprovoked epileptic discharges. TLE is a neurologic disorder characterized by acute long-lasting seizures (i.e., abnormal electrical activity in the brain) or seizures that occur in close proximity without recovery, typically after a brain injury or status epilepticus. After status epilepticus, epileptogenic hyperexcitability develops gradually over the following months to years, resulting in the emergence of chronic, recurrent seizures. Acting as a filter or gate, the hippocampal dentate gyrus (DG) normally prevents excessive excitation from propagating through the hippocampus, and is considered a critical region in the progression of epileptogenesis in pathological conditions. Importantly, lipid-derived endogenous cannabinoids (endocannabinoids), which are produced on demand as retrograde messengers, are central regulators of neuronal activity in the DG circuit. In this review, we summarize recent findings concerning the role of the DG in controlling hyperexcitability and propose how DG regulation by cannabinoids (CBs) could provide avenues for therapeutic interventions. We also highlight possible pathways and manipulations that could be relevant for the control of hyperexcitation. The use of CB compounds to treat epilepsies is controversial, as anecdotal evidence is not always validated by clinical trials. Recent publications shed light on the importance of the DG as a region regulating incoming hippocampal excitability during epileptogenesis. We review recent findings concerning the modulation of the hippocampal DG circuitry by CBs and discuss putative underlying pathways. A better understanding of the mechanisms by which CBs exert their action during seizures may be useful to improve therapies.
Assuntos
Canabinoides , Epilepsia do Lobo Temporal , Epilepsia , Estado Epiléptico , Humanos , Animais , Hipocampo/patologia , Convulsões/patologia , Epilepsia/etiologia , Epilepsia/patologia , Epilepsia do Lobo Temporal/patologia , Neurônios/patologia , Estado Epiléptico/patologia , Giro Denteado/patologia , Modelos Animais de DoençasRESUMO
Functional recovery after peripheral nerve injuries is critically dependent on axonal regeneration. Several autonomous and non-cell autonomous processes regulate axonal regeneration, including the activation of a growth-associated transcriptional program in neurons and the reprogramming of differentiated Schwann cells (dSCs) into repair SCs (rSCs), triggering the secretion of neurotrophic factors and the activation of an inflammatory response. Repair Schwann cells also release pro-regenerative extracellular vesicles (EVs), but is still unknown whether EV secretion is regulated non-cell autonomously by the regenerating neuron. Interestingly, it has been described that nerve activity enhances axonal regeneration by increasing the secretion of neurotrophic factors by rSC, but whether this activity modulates pro-regenerative EV secretion by rSC has not yet been explored. Here, we demonstrate that neuronal activity enhances the release of rSC-derived EVs and their transfer to neurons. This effect is mediated by activation of P2Y receptors in SCs after activity-dependent ATP release from sensory neurons. Importantly, activation of P2Y in rSCs also increases the amount of miRNA-21 present in rSC-EVs. Taken together, our results demonstrate that neuron to glia communication by ATP-P2Y signaling regulates the content of SC-derived EVs and their transfer to axons, modulating axonal elongation in a non-cell autonomous manner.
RESUMO
Epilepsy is a disabling, chronic brain disease,affecting ~1% of the World's population, characterized by recurrent seizures (sudden, uncontrolled brain activity), which may manifest with motor symptoms (e.g., convulsions) or non-motor symptoms. Temporal lobe epilepsies (TLE) compromising the hippocampus are the most common form of focal epilepsies. Resistance in ~1/3 of epileptic patients to the first line of treatment, i.e., antiepileptic drugs (AEDs), has been an important motivation to seek alternative treatments. Among these, the plant Cannabis sativa (commonly known as marihuana) or compounds extracted from it (cannabinoids) have gained widespread popularity. Moreover, sex differences have been proposed in epilepsy syndromes and in cannabinoid action. In the hippocampus, cannabinoids interact with the CB1R receptor whose membrane levels are regulated by ß-Arrestin2, a protein that promotes its endocytosis and causes its downregulation. In this article, we evaluate the modulatory role of WIN 55,212-2 (WIN), a synthetic exogenous cannabinoid on behavioral convulsions and on the levels of CB1R and ß-Arrestin2 in female and male adolescent rats after a single injection of the proconvulsant pentylenetetrazol (PTZ). As epilepsies can have a considerable impact on synaptic proteins that regulate neuronal toxicity, plasticity, and cognition, we also measured the levels of key proteins markers of excitatory synapses, in order to examine whether exogenous cannabinoids may prevent such pathologic changes after acute seizures. We found that the exogenous administration of WIN prevented convulsions of medium severity in females and males and increased the levels of phosphorylated CaMKII in the hippocampus. Furthermore, we observed a higher degree of colocalization between CB1R and ß-Arrestin2 in the granule cell layer.
RESUMO
Among the mechanisms of suppression that T regulatory (Treg) cells exert to control the immune responses, the secretion of small extracellular vesicles (sEV) has been recently proposed as a novel contact-independent immunomodulatory mechanism. Previous studies have demonstrated that Treg cells produce sEV, including exosomes, able to modulate the effector function of CD4+ T cells, and antigen presenting cells (APCs) such as dendritic cells (DCs) through the transfer of microRNA, cytokines, the production of adenosine, among others. Previously, we have demonstrated that Neuropilin-1 (Nrp1) is required for Tregs-mediated immunosuppression mainly by impacting on the phenotype and function of effector CD4+ T cells. Here, we show that Foxp3+ Treg cells secrete sEV, which bear Nrp1 in their membrane. These sEV modulate effector CD4+ T cell phenotype and proliferation in vitro in a Nrp1-dependent manner. Proteomic analysis indicated that sEV obtained from wild type (wt) and Nrp1KO Treg cells differed in proteins related to immune tolerance, finding less representation of CD73 and Granzyme B in sEV obtained from Nrp1KO Treg cells. Likewise, we show that Nrp1 is required in Treg cell-derived sEV for inducing skin transplantation tolerance, since a reduction in graft survival and an increase on M1/M2 ratio were found in animals treated with Nrp1KO Treg cell-derived sEV. Altogether, this study describes for the first time that Treg cells secrete sEV containing Nrp1 and that this protein, among others, is necessary to promote transplantation tolerance in vivo via sEV local administration.
Assuntos
Vesículas Extracelulares , Linfócitos T Reguladores , Animais , Vesículas Extracelulares/metabolismo , Neuropilina-1 , Proteômica , Transplante de Pele , Fatores de Transcrição/metabolismoRESUMO
Fluoxetine is often prescribed to treat depression during pregnancy. Rodent studies have shown that fluoxetine exposure during early development can induce persistent changes in the emotional behavior of the offspring. However, the effects of prenatal fluoxetine on memory have not been elucidated. This study evaluates the memory of adult male offspring from rat dams orally administered with a clinically relevant dose of 0.7 mg/kg fluoxetine from 9 weeks before pregnancy to 1 week before delivery. Hippocampal-dependent (Morris Water Maze, MWM) and non-hippocampal-dependent (Novel Object Recognition, NOR) memory paradigms were assessed. Anxiety- and depressive-like symptoms were also evaluated using the Open Field Test, Tail Suspension Test and Sucrose Preference Test. Male rats exposed to fluoxetine during gestation displayed NOR memory impairments during adulthood, as well as increased anxiety- and depressive-like symptoms. In the MWM, the offspring of fluoxetine-treated dams did not show learning deficits. However, a retention impairment was found on remote memory, 15 days after the end of training. Molecular analyses showed increased expression of NMDA subunit NR2B, and a decrease in NR2A-to- NR2B ratio in the temporal cortex, but not in the hippocampus, suggesting changes in NMDA receptor composition. These results suggest that in utero exposure to fluoxetine induces detrimental effects on non-hippocampal memory and in remote retention of hippocampal-dependent memory, which is believed to be stored in the temporal cortex, possibly due to changes in cortical NMDA receptor subunit stoichiometry. The present results warrant the need for studies on potential remote memory deficits in human offspring exposed to fluoxetine in utero.
Assuntos
Antidepressivos de Segunda Geração/toxicidade , Fluoxetina/toxicidade , Hipocampo/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/psicologia , Animais , Ansiedade/induzido quimicamente , Ansiedade/psicologia , Depressão/induzido quimicamente , Depressão/psicologia , Feminino , Preferências Alimentares , Elevação dos Membros Posteriores , Deficiências da Aprendizagem/induzido quimicamente , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Gravidez , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Reconhecimento Psicológico/efeitos dos fármacosRESUMO
Exposure to an adverse prenatal environment can influence fetal development and result in long-lasting changes in the offspring. However, the association between maternal exposure to stressful events during pregnancy and the achievement of pre-reading skills in the offspring is unknown. Here we examined the association between prenatal exposure to the Chilean high-magnitude earthquake that occurred on February 27th, 2010 and the development of early reading precursors skills (listening comprehension, print knowledge, alphabet knowledge, vocabulary, and phonological awareness) in children at kindergarten age. This multilevel retrospective cohort study including 3280 children, of whom 2415 were unexposed and 865 were prenatally exposed to the earthquake shows substantial evidence that maternal exposure to an unambiguously stressful event resulted in impaired pre-reading skills and that a higher detrimental effect was observed in those children who had been exposed to the earthquake during the first trimester of gestation. In addition, females were more significantly affected by the exposure to the earthquake than their male peers in alphabet knowledge; contrarily, males were more affected than females in print knowledge skills. These findings suggest that early intervention programs for pregnant women and/or children exposed to prenatal stress may be effective strategies to overcome impaired pre-reading skills in children.
Assuntos
Compreensão/fisiologia , Terremotos , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Leitura , Criança , Pré-Escolar , Chile , Feminino , Humanos , Masculino , Gravidez , Primeiro Trimestre da Gravidez , Estudos Retrospectivos , VocabulárioRESUMO
Cell death by glutamate excitotoxicity, mediated by N-methyl-D-aspartate (NMDA) receptors, negatively impacts brain function, including but not limited to hippocampal neurons. The NF-κB transcription factor (composed mainly of p65/p50 subunits) contributes to neuronal death in excitotoxicity, while its inhibition should improve cell survival. Using the biotin switch method, subcellular fractionation, immunofluorescence, and luciferase reporter assays, we found that NMDA-stimulated NF-κB activity selectively in hippocampal neurons, while endothelial nitric oxide synthase (eNOS), an enzyme expressed in neurons, is involved in the S-nitrosylation of p65 and consequent NF-κB inhibition in cerebrocortical, i.e., resistant neurons. The S-nitro proteomes of cortical and hippocampal neurons revealed that different biological processes are regulated by S-nitrosylation in susceptible and resistant neurons, bringing to light that protein S-nitrosylation is a ubiquitous post-translational modification, able to influence a variety of biological processes including the homeostatic inhibition of the NF-κB transcriptional activity in cortical neurons exposed to NMDA receptor overstimulation.
Assuntos
Neurônios/metabolismo , Óxido Nítrico Sintase Tipo III/fisiologia , Fator de Transcrição RelA/metabolismo , Animais , Células Cultivadas , Córtex Cerebelar , Embrião de Mamíferos , Hipocampo , Neurônios/citologia , Cultura Primária de Células , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND: Cognitive dysfunction (CD) is common among patients with the autoimmune disease systemic lupus erythematosus (SLE). Anti-ribosomal P autoantibodies associate with this dysfunction and have neuropathogenic effects that are mediated by cross-reacting with neuronal surface P antigen (NSPA) protein. Elucidating the function of NSPA can then reveal CD pathogenic mechanisms and treatment opportunities. In the brain, NSPA somehow contributes to glutamatergic NMDA receptor (NMDAR) activity in synaptic plasticity and memory. Here we analyze the consequences of NSPA absence in KO mice considering its structural features shared with E3 ubiquitin ligases and the crucial role of ubiquitination in synaptic plasticity. RESULTS: Electrophysiological studies revealed a decreased long-term potentiation in CA3-CA1 and medial perforant pathway-dentate gyrus (MPP-DG) hippocampal circuits, reflecting glutamatergic synaptic plasticity impairment in NSPA-KO mice. The hippocampal dentate gyrus of these mice showed a lower number of Arc-positive cells indicative of decreased synaptic activity and also showed proliferation defects of neural progenitors underlying less adult neurogenesis. All this translates into poor spatial and recognition memory when NSPA is absent. A cell-based assay demonstrated ubiquitination of NSPA as a property of RBR-type E3 ligases, while biochemical analysis of synaptic regions disclosed the tyrosine phosphatase PTPMEG as a potential substrate. Mice lacking NSPA have increased levels of PTPMEG due to its reduced ubiquitination and proteasomal degradation, which correlated with lower levels of GluN2A and GluN2B NMDAR subunits only at postsynaptic densities (PSDs), indicating selective trafficking of these proteins out of PSDs. As both GluN2A and GluN2B interact with PTPMEG, tyrosine (Tyr) dephosphorylation likely drives their endocytic removal from the PSD. Actually, immunoblot analysis showed reduced phosphorylation of the GluN2B endocytic signal Tyr1472 in NSPA-KO mice. CONCLUSIONS: NSPA contributes to hippocampal plasticity and memory processes ensuring appropriate levels of adult neurogenesis and PSD-located NMDAR. PTPMEG qualifies as NSPA ubiquitination substrate that regulates Tyr phosphorylation-dependent NMDAR stability at PSDs. The NSPA/PTPMEG pathway emerges as a new regulator of glutamatergic transmission and plasticity and may provide mechanistic clues and therapeutic opportunities for anti-P-mediated pathogenicity in SLE, a still unmet need.
Assuntos
Antígenos de Superfície/genética , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 4/genética , Receptores de N-Metil-D-Aspartato/genética , Animais , Antígenos de Superfície/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Proteína Tirosina Fosfatase não Receptora Tipo 4/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , UbiquitinaçãoRESUMO
The clinical benefit of therapies using Mesenchymal Stem Cells (MSCs) is attributable to their pleiotropic effect over cells and tissues, mainly through their secretome. This paracrine effect is mediated by secreted growth factors and extracellular vesicles (EV) including small EV (sEV). sEV are extra-cellular, membrane encompassed vesicles of 40 to 200 nm diameter that can trigger and signal many cellular responses depending on their cargo protein and nucleic acid repertoire. sEV are purified from cell culture conditioned media using several kits and protocols available that can be tedious and time-consuming, involving sequences of ultracentrifugations and density gradient separations, making their production a major challenge under Good Manufacturing Practices (GMP) conditions. We have developed a method to efficiently enrich cell culture media with high concentrations of sEV by encapsulating cells in semipermeable cellulose beads that allows selectively the release of small particles while offering a 3D culture condition. This method is based on the pore size of the capsules, allowing the release of particles of ≤ 200 nm including sEV. As a proof-of-principle, MSCs were encapsulated and their sEV release rate (sEV-Cap) was monitored throughout the culture and compared to sEV isolated from 2D seeded cells (sEV-2D) by repetitive ultracentrifugation cycles or a commercial kit. The isolated sEV expressed CD63, CD9, and CD81 as confirmed by flow cytometry analysis. Under transmission electron microscopy (TEM), they displayed the similar rounded morphology as sEV-2D. Their corresponding diameter size was validated by nanoparticle tracking analysis (NTA). Interestingly, sEV-Cap retained the expected biological activities of MSCs, including a pro-angiogenic effect over endothelial cells, neuritic outgrowth stimulation in hippocampal neurons and immunosuppression of T cells in vitro. Here, we successfully present a novel, cost, and time-saving method to generate sEV from encapsulated MSCs. Future applications include using encapsulated cells as a retrievable delivery device that can interact with the host niche by releasing active agents in vivo, including sEV, growth factors, hormones, and small molecules, while avoiding cell clearance, and the negative side-effect of releasing undesired components including apoptotic bodies. Finally, particles produced following the encapsulation protocol display beneficial features for their use as drug-loaded delivery vehicles.
RESUMO
Stress is a widespread problem in today's societies, having important consequences on brain function. Among the plethora of mechanisms involved in the stress response at the molecular level, the role of microRNAs (miRNAs) is beginning to be recognized. The control of gene expression by these noncoding RNAs makes them essential regulators of neuronal and synaptic physiology, and alterations in their levels have been associated with pathological conditions and mental disorders. In particular, the excitatory (i.e., glutamate-mediated) neurotransmission is importantly affected by stress. Here, we found that loss of miR-26a-5p (miR-26a henceforth) function in primary hippocampal neurons increased the frequency and amplitude of miniature excitatory currents, as well as the expression levels of the excitatory postsynaptic scaffolding protein PSD95. Incubation of primary hippocampal neurons with corticosterone downregulated miR-26a, an effect that mirrored our in vivo results, as miR-26a was downregulated in the hippocampus as well as in blood serum-derived small extracellular vesicles (sEVs) of rats exposed to two different stress paradigms by movement restriction (i.e., stress by restraint in cages or by complete immobilization in bags). Overall, these results suggest that miR-26a may be involved in the generalized stress response and that a stress-induced downregulation of miR-26a could have long-term effects on glutamate neurotransmission.
Assuntos
Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Estresse Psicológico/genética , Transmissão Sináptica , Animais , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Regulação para Baixo/genética , MicroRNAs/sangue , MicroRNAs/genética , Potenciais Pós-Sinápticos em Miniatura , Ratos Sprague-Dawley , Sinapses/metabolismo , Transmissão Sináptica/genéticaRESUMO
In the last few decades, it has been established that astrocytes play key roles in the regulation of neuronal morphology. However, the contribution of astrocyte-derived small extracellular vesicles (sEVs) to morphological differentiation of neurons has only recently been addressed. Here, we showed that cultured astrocytes expressing a GFP-tagged version of the stress-regulated astrocytic enzyme Aldolase C (Aldo C-GFP) release small extracellular vesicles (sEVs) that are transferred into cultured hippocampal neurons. Surprisingly, Aldo C-GFP-containing sEVs (Aldo C-GFP sEVs) displayed an exacerbated capacity to reduce the dendritic complexity in developing hippocampal neurons compared to sEVs derived from control (i.e., GFP-expressing) astrocytes. Using bioinformatics and biochemical tools, we found that the total content of overexpressed Aldo C-GFP correlates with an increased content of endogenous miRNA-26a-5p in both total astrocyte homogenates and sEVs. Notably, neurons magnetofected with a nucleotide sequence that mimics endogenous miRNA-26a-5p (mimic 26a-5p) not only decreased the levels of neuronal proteins associated to morphogenesis regulation, but also reproduced morphological changes induced by Aldo-C-GFP sEVs. Furthermore, neurons magnetofected with a sequence targeting miRNA-26a-5p (antago 26a-5p) were largely resistant to Aldo C-GFP sEVs. Our results support a novel and complex level of astrocyte-to-neuron communication mediated by astrocyte-derived sEVs and the activity of their miRNA content.