Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Parasitol Res ; 123(2): 124, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319497

RESUMO

Sensitive screening of eukaryotic communities in aquaculture for research and management is limited by the availability of technologies that can detect invading pathogens in an unbiased manner. Amplicon sequencing of 18S ribosomal DNA (rDNA) provides a potential pan-diagnostic test to overcome these biases; however, this technique is limited by a swamping effect of host DNA on low abundance parasite DNA. In this study, we have adapted a host 18S rDNA blocking assay to amplify eukaryotic DNA from salmonid tissue for amplicon sequencing. We demonstrate that effective salmonid 18S rDNA blocking enables sensitive detection of parasite genera in salmonid gill swabs. Furthermore, 18S rDNA amplicon sequencing with host blocking identified enriched pathogen communities in gill swabs from Atlantic salmon suffering from severe clinical gill infections compared to those exhibiting no clinical signs of gill infection. Application of host 18S rDNA blocking in salmonid samples led to improved detection of the amoebic parasite Neoparamoeba perurans, a parasite of significant threat to the Atlantic salmon aquaculture industry. These results reveal host 18S rDNA blocking as an effective strategy to improve the profiling and detection of parasitic communities in aquaculture species. This assay can be readily adapted to any animal species for improved eukaryotic profiling across agricultural and veterinary industries.


Assuntos
Parasitos , Salmo salar , Animais , Ribossomos , DNA Ribossômico/genética , Agricultura
3.
J Fish Dis ; 46(9): 987-999, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37294659

RESUMO

Nodular gill disease (NGD) is an infectious condition characterized by proliferative gill lesions leading to respiratory problems, oxygen deficiency and mortality in fish. Globally, NGD primarily impacts freshwater salmonids in intensive aquaculture systems. In recent years, numerous outbreaks of severe gill disease have affected more than half of the larger rainbow trout (Oncorhynchus mykiss) farms in Switzerland, mainly during spring and early summer. Mortality has reached up to 50% in cases where no treatment was administered. Freshwater amoeba are the presumed aetiologic agent of NGD. The gross gill score (GS) categorising severity of gill pathology is a valuable first-line diagnostic tool aiding fish farmers in identifying and quantifying amoebic gill disease (AGD) in farmed marine salmonids. In this study, the GS was adapted to the NGD outbreak in farmed trout in Switzerland. In addition to scoring disease severity, gill swabs from NGD-affected rainbow trout were sampled and amoeba were cultured from these swabs. Morphologic and molecular methods identified six amoeba strains: Cochliopodium sp., Naegleria sp., Vannella sp., Ripella sp., Saccamoeba sp. and Mycamoeba sp. However, the importance of the different amoeba species for the onset and progression of NGD still has to be evaluated. This paper presents the first description of NGD with associated amoeba infection in farmed rainbow trout in Switzerland.


Assuntos
Amoeba , Doenças dos Peixes , Oncorhynchus mykiss , Animais , Brânquias/patologia , Suíça/epidemiologia , Doenças dos Peixes/patologia , Aquicultura
4.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36662028

RESUMO

AIMS: To investigate the relationship between microbial community profiles and gill pathology during a production cycle of Atlantic salmon in two commercial hatcheries. METHODS AND RESULTS: Relationships between gill histology, environmental conditions, and microbiome were determined using high-throughput data, including 16S rDNA amplicon sequencing data, histopathology data, and water quality parameters. Hatchery A used riverine water and operated a mixed system of recirculation aquaculture system (RAS) and flowthrough. Hatchery B was used bore water and operated a RAS. Melanin deposits, hyperplastic, and inflammatory lesions were observed histologically in the gills. A higher prevalence of melanin deposits was detected and correlated to a change in beta diversity of bacterial communities in early time points (fingerling and parr stages). High abundance of Sphaerotilus sp.,Pseudomonas sp.,Nitrospira sp.,Exiguobacterium sp.,Deinococcus sp.,and Comamonas sp. was correlated with a high prevalence of melanin in filaments. Bacterial diversity increased as the fish cohort transitioned from RAS to flowthrough in hatchery A. CONCLUSIONS: Under commercial conditions, the commensal community of gill bacteria was related to melanin prevalence.


Assuntos
Doenças dos Peixes , Microbiota , Salmo salar , Animais , Brânquias/microbiologia , Melaninas , Microbiota/genética , Aquicultura , Bactérias/genética , Doenças dos Peixes/microbiologia
5.
J Fish Dis ; 45(11): 1721-1731, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36017570

RESUMO

Epitheliocystis, an intracellular bacterial infection in the gills and skin epithelium, has been frequently reported in Atlantic salmon (Salmo salar) during freshwater production in a number of countries. This study describes the prevalence and intensity of a natural epitheliocystis infection present in the gills of two strains of Atlantic salmon reared in either a flow-through (FT) or a recirculation aquaculture system (RAS) in Ireland. Repeated sampling of gills prior to and throughout seawater transfer, histology and quantitative real-time PCR were used to determine infection prevalence and intensity. Despite no clinical gill disease, and minor histopathological changes, epitheliocystis lesions were identified in histology at all time points. Specific PCR confirmed the presence of Candidatus Clavichlamydia salmonicola in both strains and its number of copies was correlated with intensity of epitheliocystis lesions. A significant interaction between hatchery system and fish strain on the prevalence and intensity of gill epitheliocystis was found both using histological and molecular methods. Specifically, fish from FT had higher prevalence and intensity than RAS reared fish and within FT, the Irish cohort were more affected than Icelandic.


Assuntos
Infecções Bacterianas , Doenças dos Peixes , Salmo salar , Animais , Aquicultura , Infecções Bacterianas/veterinária , Doenças dos Peixes/microbiologia , Água Doce , Brânquias/patologia , Prevalência
6.
Dev Comp Immunol ; 132: 104396, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35304180

RESUMO

One of the most intriguing discoveries of the genomic era is that only a small fraction of the genome is dedicated to protein coding. The remaining fraction of the genome contains, amongst other elements, a number of non-coding transcripts that regulate the transcription of protein coding genes. Here we used transcriptome sequencing data to explore these gene regulatory networks using RNA derived from gill tissue of Atlantic salmon (Salmo salar) infected with Pilchard orthomyxovirus (POMV), but showing no clinical signs of disease. We examined fish sampled early during the challenge trial (8-12 days after infection) to uncover potential biomarkers of early infection and innate immunity, and fish sampled late during the challenge trial (19 dpi) to elucidate potential markers of resistance to POMV. We analysed total RNA-sequencing data to find differentially expressed messenger RNAs (mRNA) and identify new long-noncoding RNAs (lncRNAs). We also evaluated small RNA sequencing data to find differentially transcribed microRNAs (miRNAs) and explore their role in gene regulatory networks. Whole-genome expression data (both coding and non-coding transcripts) were used to explore the crosstalk between RNA molecules by constructing competing endogenous RNA networks (ceRNA). The teleost specific miR-462/miR-731 cluster was strongly induced in POMV infected fish and deemed a potential biomarker of early infection. Gene networks also identified a selenoprotein (selja), downregulated in fish sampled late during the challenge, which may be associated to viral clearance and the return to homeostasis after infection. This study provides the basis for further investigations using molecular tools to overexpress or inhibit miRNAs to confirm the functional impact of the interactions presented here on gene expression and their potential application at commercial level.


Assuntos
MicroRNAs , Orthomyxoviridae , RNA Longo não Codificante , Salmo salar , Animais , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Salmo salar/genética , Salmo salar/metabolismo , Transcriptoma
7.
Front Immunol ; 12: 672700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135900

RESUMO

Marine farmed Atlantic salmon (Salmo salar) are susceptible to recurrent amoebic gill disease (AGD) caused by the ectoparasite Neoparamoeba perurans over the growout production cycle. The parasite elicits a highly localized response within the gill epithelium resulting in multifocal mucoid patches at the site of parasite attachment. This host-parasite response drives a complex immune reaction, which remains poorly understood. To generate a model for host-parasite interaction during pathogenesis of AGD in Atlantic salmon the local (gill) and systemic transcriptomic response in the host, and the parasite during AGD pathogenesis was explored. A dual RNA-seq approach together with differential gene expression and system-wide statistical analyses of gene and transcription factor networks was employed. A multi-tissue transcriptomic data set was generated from the gill (including both lesioned and non-lesioned tissue), head kidney and spleen tissues naïve and AGD-affected Atlantic salmon sourced from an in vivo AGD challenge trial. Differential gene expression of the salmon host indicates local and systemic upregulation of defense and immune responses. Two transcription factors, znfOZF-like and znf70-like, and their associated gene networks significantly altered with disease state. The majority of genes in these networks are candidates for mediators of the immune response, cellular proliferation and invasion. These include Aurora kinase B-like, rho guanine nucleotide exchange factor 25-like and protein NDNF-like inhibited. Analysis of the N. perurans transcriptome during AGD pathology compared to in vitro cultured N. perurans trophozoites, as a proxy for wild type trophozoites, identified multiple gene candidates for virulence and indicates a potential master regulatory gene system analogous to the two-component PhoP/Q system. Candidate genes identified are associated with invasion of host tissue, evasion of host defense mechanisms and formation of the mucoid lesion. We generated a novel model for host-parasite interaction during AGD pathogenesis through integration of host and parasite functional profiles. Collectively, this dual transcriptomic study provides novel molecular insights into the pathology of AGD and provides alternative theories for future research in a step towards improved management of AGD.


Assuntos
Amebíase/imunologia , Doenças dos Peixes/imunologia , Interações Hospedeiro-Parasita/fisiologia , Salmo salar/parasitologia , Amebíase/genética , Animais , Doenças dos Peixes/genética , RNA-Seq , Salmo salar/imunologia , Transcriptoma
8.
Access Microbiol ; 3(4): 000223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34151174

RESUMO

Current phylogenetic analysis of the flavivirus genus has identified a group of mosquito-borne viruses for which the vertebrate hosts are currently unknown. Here we report the identification of a novel member of this group from a peridomestic rodent species (Sundamys muelleri) collected in Sarawak, Malaysia in 2016. We propose to name this novel flavivirus Batu Kawa virus after the location in which it was identified, with the abbreviation BKWV. Characterization of the BKWV genome allowed identification of putative mature peptides, potential enzyme motifs and conserved structural elements. Phylogenetic analysis found BKWV to be most closely related to Nhumirim virus (from Brazil) and Barkedji virus (from Senegal and Israel). Both of these viruses have been identified in Culex mosquitoes and belong to a group of viruses with unknown vertebrate hosts. This is the first known report of a member of this group of viruses from a potential mammalian host.

9.
Microorganisms ; 9(5)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063289

RESUMO

Branchial surfaces of finfish species contain a microbial layer rich in commensal bacteria which can provide protection through competitive colonization and production of antimicrobial products. Upon disturbance or compromise, pathogenic microbiota may opportunistically infiltrate this protective barrier and initiate disease. Amoebic gill disease (AGD) is a globally significant health condition affecting salmonid mariculture. The current study examined whether altering the diversity and/or abundance of branchial bacteria could influence the development of experimentally induced AGD. Here, we challenged Atlantic salmon (Salmo salar) with Neoparamoeba perurans in a number of scenarios where the bacterial community on the gill was altered or in a state of instability. Administration of oxytetracycline (in-feed) and chloramine-T (immersion bath) significantly altered the bacterial load and diversity of bacterial taxa upon the gill surface, and shifted the community profile appreciably. AGD severity was marginally higher in fish previously subjected to chloramine-T treatment following 21 days post-challenge. This research suggests that AGD progression and severity was not clearly linked to specific bacterial taxa present in these systems. However, we identified AGD associated taxa including known pathogenic genus (Aliivibrio, Tenacibaculum and Pseudomonas) which increased in abundance as AGD progressed. Elucidation of a potential role for these bacterial taxa in AGD development is warranted.

10.
Microorganisms ; 9(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947171

RESUMO

Freshwater bathing for 2-3 h is the main treatment to control amoebic gill disease of marine-farmed Atlantic salmon. Recent in vitro studies have demonstrated that amoebae (Neoparamoeba perurans) detach when exposed to freshwater and that some eventually reattach to culture plates when returned to seawater. Here, we evaluated the potential for gill-detached N. perurans to survive a commercially relevant treatment and infect AGD-naïve fish and whether holding used bathwater for up to 6 h post treatment would lower infectivity. AGD-affected fish were bathed in freshwater for 2 h. Naïve salmon were exposed to aliquots of the used bathwater after 2, 4, 6 and 8 h. The inoculation was performed at 30 ppt for 2 h, followed by gradual dilution with seawater. Sampling at 20 days post inoculation (dpi) and 40 dpi confirmed rapid AGD development in fish inoculated in 2 h used bathwater, but a slower AGD development following exposure to 4 h bathwater. AGD signs were variable and reduced following longer bathwater holding times. These results suggest that viable amoebae are likely returned to seawater following commercial freshwater treatments, but that the risk of infection can be reduced by retention of bathwater before release.

11.
J Fish Dis ; 44(9): 1355-1367, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33990985

RESUMO

Amoebic gill disease (AGD) is caused by the marine amoeba Neoparamoeba perurans, a facultative parasite. Despite the significant impact this disease has on production of Atlantic salmon worldwide, the mechanisms involved in host-parasite interaction remains unknown. Excessive gill mucus secretion is reported as a host defence mechanism to prevent microbial colonization in the gill epithelium. Despite this response, N. perurans still attaches and proliferates. The present study aimed to investigate the interaction between N. perurans and mucin, the most abundant component in mucus. An in vitro adhesion assay using bovine submaxillary mucin (BSM) demonstrated that amoeba binding to mucin-coated substrate was significantly higher than to the BSA control. This binding interaction is likely glycan-mediated as pre-incubation with galactose, galactosamine, N-acetylgalactosamine and fucose reduced mucin adhesion to control levels. The ability of N. perurans to secrete proteases that target mucin was also investigated. Protease activity was detected in the amoeba culture media in the presence of BSM, but not when protease inhibitor was added. Mucin degradation was visually assessed on protein gels. This study provides preliminary evidence that N. perurans has developed mechanisms to interact with and evade mucus by binding to mucin glycan receptors and secreting proteases with mucolytic activity.


Assuntos
Amebozoários/fisiologia , Mucinas/metabolismo , Peptídeo Hidrolases/metabolismo , Amebíase , Amebozoários/enzimologia , Animais , Bovinos , Doenças dos Peixes/parasitologia , Brânquias/parasitologia , Peptídeo Hidrolases/química
12.
J Fish Dis ; 44(2): 149-160, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33314290

RESUMO

Amoebic gill disease (AGD) is one of the main health issues impacting farmed Atlantic salmon. Neoparamoeba perurans causes AGD; however, a diversity of other amoeba species colonizes the gills and there is little understanding of whether they are commensal or potentially involved in different stages of gill disease development. Here, we conduct in vivo challenges of naïve Atlantic salmon with cultured Nolandella sp. and Pseudoparamoeba sp. to investigate their pathogenicity to Atlantic salmon gills. Additionally, we assessed whether the presence of Nolandella sp. and Pseudoparamoeba sp. influences the onset and/or severity of N. perurans-induced AGD. All three strains attached and multiplied on the gills according to qPCR analysis. Furthermore, minor gross gill lesions and histological changes were observed post-exposure. While N. perurans was found associated with classical AGD lesions, Nolandella sp. and Pseudoparamoeba sp. were not found associated with lesion sites and these lesions did not meet the expected composite of histopathological changes for AGD. Moreover, the presence of these non-N. perurans species did not significantly increase the severity of AGD. This trial provides evidence that cultured Nolandella sp. and Pseudoparamoeba sp. do not induce AGD and do not influence the severity of AGD during the early stages of development.


Assuntos
Amebíase/parasitologia , Amebozoários/patogenicidade , Doenças dos Peixes/parasitologia , Brânquias/parasitologia , Amebíase/etiologia , Amebíase/patologia , Amebozoários/genética , Amebozoários/parasitologia , Animais , Doenças dos Peixes/etiologia , Doenças dos Peixes/patologia , Reação em Cadeia da Polimerase em Tempo Real , Salmo salar
13.
J Fish Dis ; 44(1): 73-88, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32944982

RESUMO

The Tasmanian salmon industry had remained relatively free of major viral diseases until the emergence of pilchard orthomyxovirus (POMV). Originally isolated from wild pilchards, POMV is of concern to the industry as it can cause high mortality in farmed salmon (Salmo salar). Field observations suggest the virus can spread from pen to pen and between farms, but evidence of passive transmission in sea water was unclear. Our aim was to establish whether direct contact between infected and naïve fish was required for transmission, and to examine viral infection dynamics. Atlantic salmon post-smolts were challenged with POMV by either direct exposure via cohabitation or indirect exposure via virus-contaminated sea water. POMV was transmissible in sea water and direct contact between fish was not required for infection. Head kidney and heart presented the highest viral loads in early stages of infection. POMV survivors presented low viral loads in most tissues, but these remained relatively high in gills. A consistent feature was the infiltration of viral-infected melanomacrophages in different tissues, suggesting an important role of these in the immune response to POMV. Understanding POMV transmission and host-pathogen interactions is key for the development of improved surveillance tools, transmission models and ultimately for disease prevention.


Assuntos
Doenças dos Peixes/transmissão , Infecções por Orthomyxoviridae/veterinária , Salmo salar/virologia , Água do Mar/virologia , Animais , Feminino , Doenças dos Peixes/virologia , Brânquias/virologia , Rim Cefálico/virologia , Coração/virologia , Orthomyxoviridae , Infecções por Orthomyxoviridae/transmissão , Carga Viral
14.
Microorganisms ; 8(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256221

RESUMO

Amoebic gill disease (AGD) causes poor performance and death in salmonids. Mucins are mainly comprised by carbohydrates and are main components of the mucus covering the gill. Since glycans regulate pathogen binding and growth, glycosylation changes may affect susceptibility to primary and secondary infections. We investigated gill mucin O-glycosylation from Atlantic salmon with and without AGD using liquid chromatography-mass spectrometry. Gill mucin glycans were larger and more complex, diverse and fucosylated than skin mucins. Confocal microscopy revealed that fucosylated mucus coated sialylated mucus strands in ex vivo gill mucus. Terminal HexNAcs were more abundant among O-glycans from AGD-affected Atlantic salmon, whereas core 1 structures and structures with acidic moieties such as N-acetylneuraminic acid (NeuAc) and sulfate groups were less abundant compared to non-infected fish. The fucosylated and NeuAc-containing O-glycans were inversely proportional, with infected fish on the lower scale of NeuAc abundance and high on fucosylated structures. The fucosylated epitopes were of three types: Fuc-HexNAc-R, Gal-[Fuc-]HexNAc-R and HexNAc-[Fuc-]HexNAc-R. These blood group-like structures could be an avenue to diversify the glycan repertoire to limit infection in the exposed gills. Furthermore, care must be taken when using skin mucus as proxy for gill mucus, as gill mucins are distinctly different from skin mucins.

15.
Front Microbiol ; 11: 586387, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193237

RESUMO

Tenacibaculosis remains a major health issue for a number of important aquaculture species globally. On the west coast of Canada, yellow mouth (YM) disease is responsible for significant economic loss to the Atlantic salmon industry. While Tenacibaculum maritimum is considered to be the primary agent of clinical YM, the impact of YM on the resident microbial community and their influence on the oral cavity is poorly understood. Using a 16s rRNA amplicon sequencing analysis, the present study demonstrates a significant dysbiosis and a reduction in diversity of the microbial community in the YM affected Atlantic salmon. The microbial community of YM affected fish was dominated by two amplicon sequence variants (ASVs) of T. maritimum, although other less abundant ASVs were also found. Interestingly clinically unaffected (healthy) and YM surviving fish also had a high relative abundance of T. maritimum, suggesting that the presence of T. maritimum is not solely responsible for YM. A statistically significant association was observed between the abundance of T. maritimum and increased abundance of Vibrio spp. within fish displaying clinical signs of YM. Findings from our study provide further evidence that YM is a complex multifactorial disease, characterized by a profound dysbiosis of the microbial community which is dominated by distinct ASVs of T. maritimum. Opportunistic taxa, including Vibrio spp., may also play a role in clinical disease progression.

16.
Protist ; 171(6): 125773, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33243724

RESUMO

The marine protozoan parasite Neoparamoeba perurans has been established as the causative agent for amoebic gill disease (AGD) in Atlantic salmon (Salmo salar). Freshwater bathing is the only routinely used treatment for AGD in Australia while hydrogen peroxide (H2O2) is used in countries with cooler water temperatures. The identification of new treatments that do not rely on either freshwater or H2O2 bathing is highly sought. However, in vitro based methods for high throughput screening of antiparasitic compounds have not been established for this parasite. To this end the present study evaluated two in vitro bioassays based on metabolic energy production and cellular membrane integrity to distinguish between amoebistatic (crenated or pseudocyst forms with recovery possible) and amoebicidal (death) activity. Amoebae were subject to either freshwater, H2O2 or chloramine-T for 4h treatment and assessed 24h after recovery. Visualization by microscopy and bioassay assessment 24h post-treatment confirmed that H2O2 and freshwater are 95% amoebicidal albeit due to different mechanisms of action. These data are consistent with other studies where amoebae have been observed to recover following exposure to these compounds and provide evidence for the inclusion of a recovery component to differentiate between the mechanism of action of amoebicidal and amoebistatic treatments. Together these bioassays are a critical tool for high throughput screening of novel and more effective treatments against AGD.


Assuntos
Amebíase/parasitologia , Amoeba/fisiologia , Bioensaio/normas , Doenças dos Peixes/parasitologia , Ensaios de Triagem em Larga Escala/métodos , Amoeba/citologia , Animais , Organismos Aquáticos , Pesqueiros , Ensaios de Triagem em Larga Escala/normas , Viabilidade Microbiana
17.
Pathogens ; 9(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007914

RESUMO

Pilchard orthomyxovirus (POMV) is an emerging pathogen of concern to the salmon industry in Australia. To explore the molecular events that underpin POMV infection, we challenged Atlantic salmon (Salmo salar) post-smolts in seawater via cohabitation. Tissue samples of the head kidney and liver were collected from moribund and surviving individuals and analyzed using transcriptome sequencing. Viral loads were higher in the head kidney compared to the liver, yet the liver presented more upregulated genes. Fish infected with POMV showed a strong innate immune response that included the upregulation of pathogen recognition receptors such as RIG-I and Toll-like receptors as well as the induction of interferon-stimulated genes (MX, ISG15). Moribund fish also presented a dramatic induction of pro-inflammatory cytokines, contributing to severe tissue damage and morbidity. An induction of major histocompatibility complex (MHC) class I genes (B2M) and markers of T cell-mediated immunity (CD8-alpha, CD8-beta, Perforin-1, Granzyme-A) was observed in both moribund fish and survivors. In addition, differential connectivity analysis showed that three key regulators (RELA/p65, PRDM1, and HLF) related to cell-mediated immunity had significant differences in connectivity in "clinically healthy" versus "clinically affected" or moribund fish. Collectively, our results show that T cell-mediated immunity plays a central role in the response of Atlantic salmon to the infection with POMV.

18.
Microorganisms ; 8(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825417

RESUMO

The mucosal surfaces of fish play numerous roles including, but not limited to, protection against pathogens, nutrient digestion and absorption, excretion of nitrogenous wastes and osmotic regulation. During infection or disease, these surfaces act as the first line of defense, where the mucosal immune system interacts closely with the associated microbiota to maintain homeostasis. This study evaluated microbial changes across the gut and skin mucosal surfaces in yellowtail kingfish displaying signs of gut inflammation, as well as explored the host gene expression in these tissues in order to improve our understanding of the underlying mechanisms that contribute to the emergence of these conditions. For this, we obtained and analyzed 16S rDNA and transcriptomic (RNA-Seq) sequence data from the gut and skin mucosa of fish exhibiting different health states (i.e., healthy fish and fish at the early and late stages of enteritis). Both the gut and skin microbiota were perturbed by the disease. More specifically, the gastrointestinal microbiota of diseased fish was dominated by an uncultured Mycoplasmataceae sp., and fish at the early stage of the disease showed a significant loss of diversity in the skin. Using transcriptomics, we found that only a few genes were significantly differentially expressed in the gut. In contrast, gene expression in the skin differed widely between health states, in particular in the fish at the late stage of the disease. These changes were associated with several metabolic pathways that were differentially expressed and reflected a weakened host. Altogether, this study highlights the sensitivity of the skin mucosal surface in response to gut inflammation.

19.
Microorganisms ; 8(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764238

RESUMO

Amoebic gill disease is a parasitic condition that commonly affects marine farmed Atlantic salmon. The causative agent, Neoparamoeba perurans, induces a marked proliferation of the gill mucosa and focal superficial necrosis upon branchial lesions. The effect that amoebic branchialitis has upon gill associated commensal bacteria is unknown. A 16S rRNA sequencing approach was employed to profile changes in bacterial community composition, within amoebic gill disease (AGD)-affected and non-affected gill tissue. The bacterial diversity of biopsies with and without diseased tissue was significantly lower in the AGD-affected fish compared to uninfected fish. Furthermore, within the AGD-affected tissue, lesions appeared to contain a significantly higher abundance of the Flavobacterium, Tenacibaculum dicentrarchi compared to adjunct unaffected tissues. Quantitative PCR specific to both N. perurans and T. dicentrarchi was used to further examine the co-abundance of these known fish pathogens. A moderate positive correlation between these pathogens was observed. Taken together, the present study sheds new light on the complex interaction between the host, parasite and bacterial communities during AGD progression. The role that T. dicentrarchi may play in this complex relationship requires further investigation.

20.
Fish Shellfish Immunol ; 105: 415-426, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32629102

RESUMO

The Tasmanian Atlantic salmon (Salmo salar) aquaculture industry had remained relatively free of major viral diseases until the recent emergence of pilchard orthomyxovirus (POMV). The virus originally isolated from wild pilchards in Southern Australia is of great concern to the industry as it can cause high mortality. Despite its classification in the Orthomyxoviridae family, POMV is genetically divergent from infectious salmon anaemia virus (ISAV) and potentially represents a new genus within the family. Previous research has produced a formal case definition for clinical POMV, but the molecular events that underpin viral infection have not been characterized. Here we have undertaken a comparative transcriptome analysis of the response of Atlantic salmon kidney cells (ASK) in vitro to both POMV and ISAV using RNA sequencing, by harvesting cells at 6 and 24 h post infection (hpi). Despite their genomic differences, both orthomyxoviruses induced significant, and in some cases similar, innate antiviral responses. Early up-regulation of pathogen recognition receptor genes, RIG-I and TLR3, was observed in response to both viruses and triggered downstream interferon (IFN) responses. Interferon transcripts (IFN-alpha1 and INF-alpha2) were only induced in POMV infected cells at 24 hpi, but IFN-alpha3 was up-regulated in all time points and with both viruses. In addition, a strong induction of antiviral response genes (Mx and ISG15) was observed during the early infection with both viruses. Analysis of transcription factor binding sites in the up-regulated gene sets indicated that the host response to both viruses was largely driven by interferon regulatory factors (IRF) 1 and 2. Only three genes (slc35f2, odf2, LOC106608698) were differentially expressed in opposite directions, up-regulated with POMV and strongly down-regulated with ISAV at 24 hpi. Differential expression of these transcripts is possibly a consequence of virus divergence, but could also be associated to higher viral loads observed in the infection with POMV. Results from this study improve our understanding of the innate immune responses and host-pathogen interactions between POMV and Atlantic salmon. Early host response genes could potentially be exploited as subclinical biomarkers specific to POMV, and improved the development of tools for disease surveillance.


Assuntos
Doenças dos Peixes/imunologia , Imunidade Inata , Infecções por Orthomyxoviridae/veterinária , Orthomyxoviridae/genética , Salmo salar , Transcriptoma , Animais , Doenças dos Peixes/virologia , Perfilação da Expressão Gênica/veterinária , Isavirus/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA