Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Malar J ; 23(1): 86, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532415

RESUMO

BACKGROUND: The degree to which Anopheles mosquitoes prefer biting humans over other vertebrate hosts, i.e. the human blood index (HBI), is a crucial parameter for assessing malaria transmission risk. However, existing techniques for identifying mosquito blood meals are demanding in terms of time and effort, involve costly reagents, and are prone to inaccuracies due to factors such as cross-reactivity with other antigens or partially digested blood meals in the mosquito gut. This study demonstrates the first field application of mid-infrared spectroscopy and machine learning (MIRS-ML), to rapidly assess the blood-feeding histories of malaria vectors, with direct comparison to PCR assays. METHODS AND RESULTS: Female Anopheles funestus mosquitoes (N = 1854) were collected from rural Tanzania and desiccated then scanned with an attenuated total reflectance Fourier-transform Infrared (ATR-FTIR) spectrometer. Blood meals were confirmed by PCR, establishing the 'ground truth' for machine learning algorithms. Logistic regression and multi-layer perceptron classifiers were employed to identify blood meal sources, achieving accuracies of 88%-90%, respectively, as well as HBI estimates aligning well with the PCR-based standard HBI. CONCLUSIONS: This research provides evidence of MIRS-ML effectiveness in classifying blood meals in wild Anopheles funestus, as a potential complementary surveillance tool in settings where conventional molecular techniques are impractical. The cost-effectiveness, simplicity, and scalability of MIRS-ML, along with its generalizability, outweigh minor gaps in HBI estimation. Since this approach has already been demonstrated for measuring other entomological and parasitological indicators of malaria, the validation in this study broadens its range of use cases, positioning it as an integrated system for estimating pathogen transmission risk and evaluating the impact of interventions.


Assuntos
Anopheles , Malária , Animais , Humanos , Feminino , Mosquitos Vetores , Malária/epidemiologia , Aprendizado de Máquina , Espectrofotometria Infravermelho , Comportamento Alimentar
2.
Parasit Vectors ; 17(1): 143, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500231

RESUMO

BACKGROUND: Accurately determining the age and survival probabilities of adult mosquitoes is crucial for understanding parasite transmission, evaluating the effectiveness of control interventions and assessing disease risk in communities. This study was aimed at demonstrating the rapid identification of epidemiologically relevant age categories of Anopheles funestus, a major Afro-tropical malaria vector, through the innovative combination of infrared spectroscopy and machine learning, instead of the cumbersome practice of dissecting mosquito ovaries to estimate age based on parity status. METHODS: Anopheles funestus larvae were collected in rural south-eastern Tanzania and reared in an insectary. Emerging adult females were sorted by age (1-16 days old) and preserved using silica gel. Polymerase chain reaction (PCR) confirmation was conducted using DNA extracted from mosquito legs to verify the presence of An. funestus and to eliminate undesired mosquitoes. Mid-infrared spectra were obtained by scanning the heads and thoraces of the mosquitoes using an attenuated total reflection-Fourier transform infrared (ATR-FT-IR) spectrometer. The spectra (N = 2084) were divided into two epidemiologically relevant age groups: 1-9 days (young, non-infectious) and 10-16 days (old, potentially infectious). The dimensionality of the spectra was reduced using principal component analysis, and then a set of machine learning and multi-layer perceptron (MLP) models were trained using the spectra to predict the mosquito age categories. RESULTS: The best-performing model, XGBoost, achieved overall accuracy of 87%, with classification accuracy of 89% for young and 84% for old An. funestus. When the most important spectral features influencing the model performance were selected to train a new model, the overall accuracy increased slightly to 89%. The MLP model, utilizing the significant spectral features, achieved higher classification accuracy of 95% and 94% for the young and old An. funestus, respectively. After dimensionality reduction, the MLP achieved 93% accuracy for both age categories. CONCLUSIONS: This study shows how machine learning can quickly classify epidemiologically relevant age groups of An. funestus based on their mid-infrared spectra. Having been previously applied to An. gambiae, An. arabiensis and An. coluzzii, this demonstration on An. funestus underscores the potential of this low-cost, reagent-free technique for widespread use on all the major Afro-tropical malaria vectors. Future research should demonstrate how such machine-derived age classifications in field-collected mosquitoes correlate with malaria in human populations.


Assuntos
Anopheles , Malária , Animais , Feminino , Humanos , Lactente , Pré-Escolar , Criança , Recém-Nascido , Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Espectroscopia de Infravermelho com Transformada de Fourier , Tanzânia
3.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376385

RESUMO

The rheology of air or moisture sensitive liquids, gels, and glasses requires complicated rheometer-in-glovebox laboratory setups. Here, we demonstrate the use of a heavier-than-air cover gas, sulfur hexafluoride, and the design of a cover gas container that can attach to the lower geometry plate of any rheometer to carry out rheology experiments on air-sensitive liquids and soft solids. Rheological measurements of air-reactive ionic liquid trimethylsulfonium bromide-AlCl3, moisture sensitive titanium(IV) propoxide, and glycerin demonstrate the effectiveness of the cover-gas method for loading samples on acquiring correct temperature dependent viscosity data of the sample in the absence of reaction products.

4.
J Am Chem Soc ; 146(1): 368-376, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38124370

RESUMO

Water plays a role in the stability, reactivity, and dynamics of the solutes that it contains. The presence of ions alters this capacity by changing the dynamics and structure of water. However, our understanding of how and to what extent this occurs is still incomplete. Here, a study of the low-frequency Raman spectra of aqueous solutions of various cations by using optical Kerr-effect spectroscopy is presented. This technique allows for the measurement of the changes that ions cause in both the diffusive dynamics and the vibrations of the hydrogen-bond structure of water. It is found that when salts are added, some of the water molecules become part of the ion solvation layers, while the rest retain the same diffusional properties as those of pure water. The slowing of the dynamics of the water molecules in the solvation shell of each ion was found to depend on its charge density at infinite dilution conditions and on its position in the Hofmeister series at higher concentrations. It is also observed that all cations weaken the hydrogen-bond structure of the solution and that this weakening depends only on the size of the cation. Finally, evidence is found that ions tend to form amorphous aggregates, even at very dilute concentrations. This work provides a novel approach to water dynamics that can be used to better study the mechanisms of solute nucleation and crystallization, the structural stability of biomolecules, and the dynamic properties of complex solutions, such as water-in-salt electrolytes.

5.
Malar J ; 22(1): 346, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950315

RESUMO

Studies on the applications of infrared (IR) spectroscopy and machine learning (ML) in public health have increased greatly in recent years. These technologies show enormous potential for measuring key parameters of malaria, a disease that still causes about 250 million cases and 620,000 deaths, annually. Multiple studies have demonstrated that the combination of IR spectroscopy and machine learning (ML) can yield accurate predictions of epidemiologically relevant parameters of malaria in both laboratory and field surveys. Proven applications now include determining the age, species, and blood-feeding histories of mosquito vectors as well as detecting malaria parasite infections in both humans and mosquitoes. As the World Health Organization encourages malaria-endemic countries to improve their surveillance-response strategies, it is crucial to consider whether IR and ML techniques are likely to meet the relevant feasibility and cost-effectiveness requirements-and how best they can be deployed. This paper reviews current applications of IR spectroscopy and ML approaches for investigating malaria indicators in both field surveys and laboratory settings, and identifies key research gaps relevant to these applications. Additionally, the article suggests initial target product profiles (TPPs) that should be considered when developing or testing these technologies for use in low-income settings.


Assuntos
Culicidae , Malária , Animais , Humanos , Inteligência Artificial , Lacunas de Evidências , Malária/epidemiologia , Mosquitos Vetores , Espectrofotometria Infravermelho/métodos
6.
J Am Chem Soc ; 145(48): 26061-26067, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37978954

RESUMO

On supercooling a liquid, the viscosity rises rapidly until at the glass transition it vitrifies into an amorphous solid accompanied by a steep drop in the heat capacity. Therefore, a pure homogeneous liquid is not expected to display more than one glass transition. Here we show that a family of single-component homogeneous molecular liquids, titanium tetraalkoxides, exhibit two calorimetric glass transitions of comparable magnitude, one of which is the conventional glass transition associated with dynamic arrest of the bulk liquid properties, while the other is associated with the freezing out of intramolecular degrees of freedom. Such intramolecular vitrification is likely to be found in molecules in which low-frequency terahertz intramolecular motion is coupled to the surrounding liquid. These results imply that intramolecular barrier-crossing processes, typically associated with chemical reactivity, do not necessarily follow the Arrhenius law but may freeze out at a finite temperature.

7.
Sci Rep ; 13(1): 18499, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898634

RESUMO

Mid-infrared spectroscopy (MIRS) combined with machine learning analysis has shown potential for quick and efficient identification of mosquito species and age groups. However, current technology to collect spectra is destructive to the sample and does not allow targeting specific tissues of the mosquito, limiting the identification of other important biological traits such as insecticide resistance. Here, we assessed the use of a non-destructive approach of MIRS for vector surveillance, micro diffuse reflectance spectroscopy (µDRIFT) using mosquito legs to identify species, age and cuticular insecticide resistance within the Anopheles gambiae s.l. complex. These mosquitoes are the major vectors of malaria in Africa and the focus on surveillance in malaria control programs. Legs required significantly less scanning time and showed more spectral consistence compared to other mosquito tissues. Machine learning models were able to identify An. gambiae and An. coluzzii with an accuracy of 0.73, two ages groups (3 and 10 days old) with 0.77 accuracy and we obtained accuracy of 0.75 when identifying cuticular insecticide resistance. Our results highlight the potential of different mosquito tissues and µDRIFT as tools for biological trait identification on mosquitoes that transmit malaria. These results can guide new ways of identifying mosquito traits which can help the creation of innovative surveillance programs by adapting new technology into mosquito surveillance and control tools.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Mosquitos Vetores , Resistência a Inseticidas , Espectrofotometria Infravermelho , Inseticidas/farmacologia , Controle de Mosquitos/métodos
9.
Nat Commun ; 14(1): 215, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639380

RESUMO

A common feature of glasses is the "boson peak", observed as an excess in the heat capacity over the crystal or as an additional peak in the terahertz vibrational spectrum. The microscopic origins of this peak are not well understood; the emergence of locally ordered structures has been put forward as a possible candidate. Here, we show that depolarised Raman scattering in liquids consisting of highly symmetric molecules can be used to isolate the boson peak, allowing its detailed observation from the liquid into the glass. The boson peak in the vibrational spectrum matches the excess heat capacity. As the boson peak intensifies on cooling, wide-angle x-ray scattering shows the simultaneous appearance of a pre-peak due to molecular clusters consisting of circa 20 molecules. Atomistic molecular dynamics simulations indicate that these are caused by over-coordinated molecules. These findings represent an essential step toward our understanding of the physics of vitrification.

10.
BMC Bioinformatics ; 24(1): 11, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624386

RESUMO

BACKGROUND: Old mosquitoes are more likely to transmit malaria than young ones. Therefore, accurate prediction of mosquito population age can drastically improve the evaluation of mosquito-targeted interventions. However, standard methods for age-grading mosquitoes are laborious and costly. We have shown that Mid-infrared spectroscopy (MIRS) can be used to detect age-specific patterns in mosquito cuticles and thus can be used to train age-grading machine learning models. However, these models tend to transfer poorly across populations. Here, we investigate whether applying dimensionality reduction and transfer learning to MIRS data can improve the transferability of MIRS-based predictions for mosquito ages. METHODS: We reared adults of the malaria vector Anopheles arabiensis in two insectaries. The heads and thoraces of female mosquitoes were scanned using an attenuated total reflection-Fourier transform infrared spectrometer, which were grouped into two different age classes. The dimensionality of the spectra data was reduced using unsupervised principal component analysis or t-distributed stochastic neighbour embedding, and then used to train deep learning and standard machine learning classifiers. Transfer learning was also evaluated to improve transferability of the models when predicting mosquito age classes from new populations. RESULTS: Model accuracies for predicting the age of mosquitoes from the same population as the training samples reached 99% for deep learning and 92% for standard machine learning. However, these models did not generalise to a different population, achieving only 46% and 48% accuracy for deep learning and standard machine learning, respectively. Dimensionality reduction did not improve model generalizability but reduced computational time. Transfer learning by updating pre-trained models with 2% of mosquitoes from the alternate population improved performance to ~ 98% accuracy for predicting mosquito age classes in the alternative population. CONCLUSION: Combining dimensionality reduction and transfer learning can reduce computational costs and improve the transferability of both deep learning and standard machine learning models for predicting the age of mosquitoes. Future studies should investigate the optimal quantities and diversity of training data necessary for transfer learning and the implications for broader generalisability to unseen datasets.


Assuntos
Anopheles , Malária , Animais , Adulto , Feminino , Humanos , Mosquitos Vetores , Aprendizado de Máquina
12.
J Am Chem Soc ; 144(15): 6727-6733, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35384650

RESUMO

Laser-induced crystal nucleation through optical tweezing, and in particular polymorph selection through laser polarization, promises unprecedented control over crystallization. However, in the absence of a nearby liquid-liquid critical point or miscibility gap, the origin of the required mesoscale clusters remains unclear. A number of recent studies of so-called nonclassical nucleation have suggested the presence of large amorphous clusters. Here, we show that supersaturated aqueous glycine solutions form metastable intermediate particles that are off the direct path to crystal nucleation. Laser-induced crystal nucleation only occurs when the laser "activates" one of these particles. In situ low-frequency Raman spectroscopy is used to demonstrate their amorphous or partially ordered character and transformation to various crystal polymorphs. The requirement for solution aging in many previously reported laser-induced crystal nucleation experiments strongly suggests that the presence of amorphous intermediates is a general requirement.


Assuntos
Glicina , Lasers , Cristalização , Glicina/química , Análise Espectral Raman , Água
13.
Nat Commun ; 13(1): 1501, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314683

RESUMO

The malaria parasite, which is transmitted by several Anopheles mosquito species, requires more time to reach its human-transmissible stage than the average lifespan of mosquito vectors. Monitoring the species-specific age structure of mosquito populations is critical to evaluating the impact of vector control interventions on malaria risk. We present a rapid, cost-effective surveillance method based on deep learning of mid-infrared spectra of mosquito cuticle that simultaneously identifies the species and age class of three main malaria vectors in natural populations. Using spectra from over 40, 000 ecologically and genetically diverse An. gambiae, An. arabiensis, and An. coluzzii females, we develop a deep transfer learning model that learns and predicts the age of new wild populations in Tanzania and Burkina Faso with minimal sampling effort. Additionally, the model is able to detect the impact of simulated control interventions on mosquito populations, measured as a shift in their age structures. In the future, we anticipate our method can be applied to other arthropod vector-borne diseases.


Assuntos
Anopheles , Malária , Animais , Anopheles/parasitologia , Burkina Faso/epidemiologia , Feminino , Humanos , Longevidade , Malária/epidemiologia , Malária/parasitologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores/parasitologia
14.
Phys Chem Chem Phys ; 23(23): 13250-13260, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34095914

RESUMO

Low-frequency vibrations play an essential role in biomolecular processes involving DNA such as gene expression, charge transfer, drug intercalation, and DNA-protein recognition. However, understanding the vibrational basis of these mechanisms relies on theoretical models due to the lack of experimental evidence. Here we present the low-frequency vibrational spectra of G-quadruplexes (structures formed by four strands of DNA) and B-DNA characterized using femtosecond optical Kerr-effect spectroscopy. Contrary to expectation, we found that G-quadruplexes show several strongly underdamped delocalized phonon-like modes that have the potential to contribute to the biology of the DNA at the atomic level. In addition, G-quadruplexes present modes at a higher frequency than B-DNA demonstrating that changes in the stiffness of the molecule alter its gigahertz to terahertz vibrational profile.


Assuntos
DNA/química , Quadruplex G , Modelos Moleculares , Conformação de Ácido Nucleico , Vibração
15.
J Phys Chem B ; 124(35): 7611-7624, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32790389

RESUMO

Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless bands that span many orders of magnitude of frequency, making meaningful interpretation troublesome. Ad hoc spectral line shape fitting has become a notoriously fine art in the field; a unified approach to handling such spectra is long overdue. Here we apply ultrafast optical Kerr-effect (OKE) spectroscopy to study the intermolecular dynamics of room-temperature n-alkanes, cycloalkanes, and six-carbon rings, as well as liquid methane and propane. This work provides stress tests and converges upon an experimentally robust model across simple molecular series and range of temperatures, providing a blueprint for the interpretation of the dynamics of van der Waals liquids. This will enable the interpretation of low-frequency spectra of more complex liquids.

16.
Phys Chem Chem Phys ; 22(17): 9438-9447, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314750

RESUMO

The liquid-liquid transition in supercooled liquid water, predicted to occur around 220 K, is controversial due to the difficulty of studying it caused by competition from ice crystallization (the so-called "no man's land"). In aqueous solutions, it has been predicted to give rise to phase separation on a nanometer scale between a solute-rich high-density phase and a water-rich low-density phase. Here we report direct experimental evidence for the formation of a nanosegregated phase in eutectic aqueous solutions of LiCl and LiSCN where the presence of crystalline water can be experimentally excluded. Femtosecond infrared and Raman spectroscopies are used to determine the temperature-dependent structuring of water, the solvation of the SCN- anion, and the size of the phase segregated domains.

17.
J Am Chem Soc ; 142(16): 7591-7597, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32249557

RESUMO

Liquid-liquid transitions between two amorphous phases in a single-component liquid have courted controversy. All known examples of liquid-liquid transitions in molecular liquids have been observed in the supercooled state, suggesting an intimate connection with vitrification and locally favored structures inhibiting crystallization. However, there is precious little information about the local molecular packing in supercooled liquids, meaning that the order parameter of the transition is still unknown. Here, we investigate the liquid-liquid transition in triphenyl phosphite and show that it is caused by the competition between liquid structures that mirror two crystal polymorphs. The liquid-liquid transition is found to be between a geometrically frustrated liquid and a dynamically frustrated glass. These results indicate a general link between polymorphism and polyamorphism and will lead to a much greater understanding of the physical basis of liquid-liquid transitions and allow the systematic discovery of other examples.

18.
Wellcome Open Res ; 4: 76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31544155

RESUMO

Despite the global efforts made in the fight against malaria, the disease is resurging. One of the main causes is the resistance that Anopheles mosquitoes, vectors of the disease, have developed to insecticides. Anopheles must survive for at least 10 days to possibly transmit malaria. Therefore, to evaluate and improve malaria vector control interventions, it is imperative to monitor and accurately estimate the age distribution of mosquito populations as well as their population sizes. Here, we demonstrate a machine-learning based approach that uses mid-infrared spectra of mosquitoes to characterise simultaneously both age and species identity of females of the African malaria vector species Anopheles gambiae and An. arabiensis, using laboratory colonies. Mid-infrared spectroscopy-based prediction of mosquito age structures was statistically indistinguishable from true modelled distributions. The accuracy of classifying mosquitoes by species was 82.6%. The method has a negligible cost per mosquito, does not require highly trained personnel, is rapid, and so can be easily applied in both laboratory and field settings. Our results indicate this method is a promising alternative to current mosquito species and age-grading approaches, with further improvements to accuracy and expansion for use with wild mosquito vectors possible through collection of larger mid-infrared spectroscopy data sets.

19.
Soft Matter ; 15(41): 8279-8289, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31603454

RESUMO

About 20 years ago, it was shown that lasers can nucleate crystals in super-saturated solutions and might even be able to select the polymorph that crystallises. However, no theoretical model was found explaining the results and progress was slowed down. Here we show that laser-induced nucleation may be understood in terms of the harnessing of concentration fluctuations near a liquid-liquid critical point using optical tweezing in a process called laser-induced phase separation (LIPS) and LIPS and nucleation (LIPSaN). A theoretical model is presented based on the regular solution model with an added term representing optical tweezing while the dynamics are modelled using a Kramers diffusion equation, and the roles of heat diffusion and thermophoresis are evaluated. LIPS and LIPSaN experiments were carried out on a range of liquid mixtures and the results compared to theory.

20.
Malar J ; 18(1): 341, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31590669

RESUMO

BACKGROUND: Epidemiological surveys of malaria currently rely on microscopy, polymerase chain reaction assays (PCR) or rapid diagnostic test kits for Plasmodium infections (RDTs). This study investigated whether mid-infrared (MIR) spectroscopy coupled with supervised machine learning could constitute an alternative method for rapid malaria screening, directly from dried human blood spots. METHODS: Filter papers containing dried blood spots (DBS) were obtained from a cross-sectional malaria survey in 12 wards in southeastern Tanzania in 2018/19. The DBS were scanned using attenuated total reflection-Fourier Transform Infrared (ATR-FTIR) spectrometer to obtain high-resolution MIR spectra in the range 4000 cm-1 to 500 cm-1. The spectra were cleaned to compensate for atmospheric water vapour and CO2 interference bands and used to train different classification algorithms to distinguish between malaria-positive and malaria-negative DBS papers based on PCR test results as reference. The analysis considered 296 individuals, including 123 PCR-confirmed malaria positives and 173 negatives. Model training was done using 80% of the dataset, after which the best-fitting model was optimized by bootstrapping of 80/20 train/test-stratified splits. The trained models were evaluated by predicting Plasmodium falciparum positivity in the 20% validation set of DBS. RESULTS: Logistic regression was the best-performing model. Considering PCR as reference, the models attained overall accuracies of 92% for predicting P. falciparum infections (specificity = 91.7%; sensitivity = 92.8%) and 85% for predicting mixed infections of P. falciparum and Plasmodium ovale (specificity = 85%, sensitivity = 85%) in the field-collected specimen. CONCLUSION: These results demonstrate that mid-infrared spectroscopy coupled with supervised machine learning (MIR-ML) could be used to screen for malaria parasites in human DBS. The approach could have potential for rapid and high-throughput screening of Plasmodium in both non-clinical settings (e.g., field surveys) and clinical settings (diagnosis to aid case management). However, before the approach can be used, we need additional field validation in other study sites with different parasite populations, and in-depth evaluation of the biological basis of the MIR signals. Improving the classification algorithms, and model training on larger datasets could also improve specificity and sensitivity. The MIR-ML spectroscopy system is physically robust, low-cost, and requires minimum maintenance.


Assuntos
Teste em Amostras de Sangue Seco/instrumentação , Malária Falciparum/diagnóstico , Plasmodium falciparum/isolamento & purificação , Espectrofotometria Infravermelho/métodos , Aprendizado de Máquina Supervisionado , Humanos , Modelos Logísticos , Malária Falciparum/sangue , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA