RESUMO
Interpreting the phenotypes of bla SHV alleles in Klebsiella pneumoniae genomes is complex. Whilst all strains are expected to carry a chromosomal copy conferring resistance to ampicillin, they may also carry mutations in chromosomal bla SHV alleles or additional plasmid-borne bla SHV alleles that have extended-spectrum ß-lactamase (ESBL) activity and/or ß-lactamase inhibitor (BLI) resistance activity. In addition, the role of individual mutations/a changes is not completely documented or understood. This has led to confusion in the literature and in antimicrobial resistance (AMR) gene databases [e.g. the National Center for Biotechnology Information (NCBI) Reference Gene Catalog and the ß-lactamase database (BLDB)] over the specific functionality of individual sulfhydryl variable (SHV) protein variants. Therefore, the identification of ESBL-producing strains from K. pneumoniae genome data is complicated. Here, we reviewed the experimental evidence for the expansion of SHV enzyme function associated with specific aa substitutions. We then systematically assigned SHV alleles to functional classes (WT, ESBL and BLI resistant) based on the presence of these mutations. This resulted in the re-classification of 37 SHV alleles compared with the current assignments in the NCBI's Reference Gene Catalog and/or BLDB (21 to WT, 12 to ESBL and 4 to BLI resistant). Phylogenetic and comparative genomic analyses support that (i) SHV-1 (encoded by bla SHV-1) is the ancestral chromosomal variant, (ii) ESBL- and BLI-resistant variants have evolved multiple times through parallel substitution mutations, (iii) ESBL variants are mostly mobilized to plasmids and (iv) BLI-resistant variants mostly result from mutations in chromosomal bla SHV. We used matched genome-phenotype data from the KlebNET-GSP AMR Genotype-Phenotype Group to identify 3999 K. pneumoniae isolates carrying one or more bla SHV alleles but no other acquired ß-lactamases to assess genotype-phenotype relationships for bla SHV. This collection includes human, animal and environmental isolates collected between 2001 and 2021 from 24 countries. Our analysis supports that mutations at Ambler sites 238 and 179 confer ESBL activity, whilst most omega-loop substitutions do not. Our data also provide support for the WT assignment of 67 protein variants, including 8 that were noted in public databases as ESBL. These eight variants were reclassified as WT because they lack ESBL-associated mutations, and our phenotype data support susceptibility to third-generation cephalosporins (SHV-27, SHV-38, SHV-40, SHV-41, SHV-42, SHV-65, SHV-164 and SHV-187). The approach and results outlined here have been implemented in Kleborate v2.4.1 (a software tool for genotyping K. pneumoniae), whereby known and novel bla SHV alleles are classified based on causative mutations. Kleborate v2.4.1 was updated to include ten novel protein variants from the KlebNET-GSP dataset and all alleles in public databases as of November 2023. This study demonstrates the power of sharing AMR phenotypes alongside genome data to improve the understanding of resistance mechanisms.
Assuntos
Klebsiella pneumoniae , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/efeitos dos fármacos , beta-Lactamases/genética , beta-Lactamases/classificação , Genótipo , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Genoma Bacteriano , Plasmídeos/genética , Testes de Sensibilidade Microbiana , Mutação , Infecções por Klebsiella/microbiologia , AlelosRESUMO
Successful microbial colonization of the gastrointestinal (GI) tract hinges on an organism's ability to overcome the intense competition for nutrients in the gut between the host and the resident gut microbiome. Enteric pathogens can exploit ethanolamine (EA) in the gut to bypass nutrient competition. However, Klebsiella pneumoniae (K. pneumoniae) is an asymptomatic gut colonizer and, unlike well-studied enteric pathogens, harbors two genetically distinct ethanolamine utilization (eut) loci. Our investigation uncovered unique roles for each eut locus depending on EA utilization as a carbon or nitrogen source. Murine gut colonization studies demonstrated the necessity of both eut loci in the presence of intact gut microbiota for robust GI colonization by K. pneumoniae. Additionally, while some Escherichia coli gut isolates could metabolize EA, other commensals were incapable, suggesting that EA metabolism likely provides K. pneumoniae a selective advantage in gut colonization. Molecular and bioinformatic analyses unveiled the conservation of two eut loci among K. pneumoniae and a subset of the related taxa in the K. pneumoniae species complex, with the NtrC-RpoN regulatory cascade playing a pivotal role in regulation. These findings identify EA metabolism as a critical driver of K. pneumoniae niche establishment in the gut and propose microbial metabolism as a potential therapeutic avenue to combat K. pneumoniae infections.
Assuntos
Etanolamina , Microbioma Gastrointestinal , Infecções por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/genética , Camundongos , Animais , Etanolamina/metabolismo , Microbioma Gastrointestinal/fisiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/metabolismo , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo , Camundongos Endogâmicos C57BL , FemininoRESUMO
In this study, the genetic differences and clinical impact of the carbapenemase-encoding genes among the community and healthcare-acquired infections were assessed. This retrospective, multicenter cohort study was conducted in Colombia and included patients infected with carbapenem-resistant Gram-negative rods between 2017 and 2021. Carbapenem resistance was identified by Vitek, and carbapenemase-encoding genes were identified by whole-genome sequencing (WGS) to classify the alleles and sequence types (STs). Descriptive statistics were used to determine the association of any pathogen or gene with clinical outcomes. A total of 248 patients were included, of which only 0.8% (2/248) had community-acquired infections. Regarding the identified bacteria, the most prevalent pathogens were Pseudomonas aeruginosa and Klebsiella pneumoniae. In the WGS analysis, 228 isolates passed all the quality criteria and were analyzed. The principal carbapenemase-encoding gene was blaKPC, specifically blaKPC-2 [38.6% (88/228)] and blaKPC-3 [36.4% (83/228)]. These were frequently detected in co-concurrence with blaVIM-2 and blaNDM-1 in healthcare-acquired infections. Notably, the only identified allele among community-acquired infections was blaKPC-3 [50.0% (1/2)]. In reference to the STs, 78 were identified, of which Pseudomonas aeruginosa ST111 was mainly related to blaKPC-3. Klebsiella pneumoniae ST512, ST258, ST14, and ST1082 were exclusively associated with blaKPC-3. Finally, no particular carbapenemase-encoding gene was associated with worse clinical outcomes. The most identified genes in carbapenemase-producing Gram-negative rods were blaKPC-2 and blaKPC-3, both related to gene co-occurrence and diverse STs in the healthcare environment. Patients had several systemic complications and poor clinical outcomes that were not associated with a particular gene.IMPORTANCEAntimicrobial resistance is a pandemic and a worldwide public health problem, especially carbapenem resistance in low- and middle-income countries. Limited data regarding the molecular characteristics and clinical outcomes of patients infected with these bacteria are available. Thus, our study described the carbapenemase-encoding genes among community- and healthcare-acquired infections. Notably, the co-occurrence of carbapenemase-encoding genes was frequently identified. We also found 78 distinct sequence types, of which two were novel Pseudomonas aeruginosa, which could represent challenges in treating these infections. Our study shows that in low and middle-income countries, such as Colombia, the burden of carbapenem resistance in Gram-negative rods is a concern for public health, and regardless of the allele, these infections are associated with poor clinical outcomes. Thus, studies assessing local epidemiology, prevention strategies (including trials), and underpinning genetic mechanisms are urgently needed, especially in low and middle-income countries.
Assuntos
Antibacterianos , Proteínas de Bactérias , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Pseudomonas aeruginosa , beta-Lactamases , Humanos , Colômbia/epidemiologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estudos Retrospectivos , Masculino , Feminino , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Pessoa de Meia-Idade , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/classificação , Antibacterianos/farmacologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Adulto , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Idoso , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Carbapenêmicos/farmacologia , Infecções Comunitárias Adquiridas/microbiologia , Infecções Comunitárias Adquiridas/epidemiologia , Sequenciamento Completo do Genoma , Adolescente , Adulto JovemRESUMO
The Klebsiella pneumoniae species complex (KpSC) is a major source of nosocomial infections globally with high rates of resistance to antimicrobials. Consequently, there is growing interest in understanding virulence factors and their association with cellular metabolic processes for developing novel anti-KpSC therapeutics. Phenotypic assays have revealed metabolic diversity within the KpSC, but metabolism research has been neglected due to experiments being difficult and cost-intensive. Genome-scale metabolic models (GSMMs) represent a rapid and scalable in silico approach for exploring metabolic diversity, which compile genomic and biochemical data to reconstruct the metabolic network of an organism. Here we use a diverse collection of 507 KpSC isolates, including representatives of globally distributed clinically relevant lineages, to construct the most comprehensive KpSC pan-metabolic model to date, KpSC pan v2. Candidate metabolic reactions were identified using gene orthology to known metabolic genes, prior to manual curation via extensive literature and database searches. The final model comprised a total of 3550 reactions, 2403 genes and can simulate growth on 360 unique substrates. We used KpSC pan v2 as a reference to derive strain-specific GSMMs for all 507 KpSC isolates, and compared these to GSMMs generated using a prior KpSC pan-reference (KpSC pan v1) and two single-strain references. We show that KpSC pan v2 includes a greater proportion of accessory reactions (8.8â%) than KpSC pan v1 (2.5â%). GSMMs derived from KpSC pan v2 also generate more accurate growth predictions, with high median accuracies of 95.4â% (aerobic, n=37 isolates) and 78.8â% (anaerobic, n=36 isolates) for 124 matched carbon substrates. KpSC pan v2 is freely available at https://github.com/kelwyres/KpSC-pan-metabolic-model, representing a valuable resource for the scientific community, both as a source of curated metabolic information and as a reference to derive accurate strain-specific GSMMs. The latter can be used to investigate the relationship between KpSC metabolism and traits of interest, such as reservoirs, epidemiology, drug resistance or virulence, and ultimately to inform novel KpSC control strategies.
Assuntos
Infecção Hospitalar , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Carbono , Bases de Dados Factuais , Genômica , KlebsiellaRESUMO
Metabolic capacity can vary substantially within a bacterial species, leading to ecological niche separation, as well as differences in virulence and antimicrobial susceptibility. Genome-scale metabolic models are useful tools for studying the metabolic potential of individuals, and with the rapid expansion of genomic sequencing there is a wealth of data that can be leveraged for comparative analysis. However, there exist few tools to construct strain-specific metabolic models at scale. Here, we describe Bactabolize, a reference-based tool which rapidly produces strain-specific metabolic models and growth phenotype predictions. We describe a pan reference model for the priority antimicrobial-resistant pathogen, Klebsiella pneumoniae, and a quality control framework for using draft genome assemblies as input for Bactabolize. The Bactabolize-derived model for K. pneumoniae reference strain KPPR1 performed comparatively or better than currently available automated approaches CarveMe and gapseq across 507 substrate and 2317 knockout mutant growth predictions. Novel draft genomes passing our systematically defined quality control criteria resulted in models with a high degree of completeness (≥99% genes and reactions captured compared to models derived from matched complete genomes) and high accuracy (mean 0.97, n=10). We anticipate the tools and framework described herein will facilitate large-scale metabolic modelling analyses that broaden our understanding of diversity within bacterial species and inform novel control strategies for priority pathogens.
Assuntos
Anti-Infecciosos , Genoma Bacteriano , Humanos , Klebsiella pneumoniae/genética , Virulência/genética , Fenótipo , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologiaRESUMO
Adaptation to selective pressures is crucial for clinically important pathogens to establish epidemics, but the underlying evolutionary drivers remain poorly understood. The current epidemic of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a significant threat to public health. In this study we analyzed the genome sequences of 794 CRKP bloodstream isolates collected in 40 hospitals in China between 2014 and 2019. We uncovered a subclonal replacement in the predominant clone ST11, where the previously prevalent subclone OL101:KL47 was replaced by O2v1:KL64 over time in a stepwise manner. O2v1:KL64 carried a higher load of mobile genetic elements, and a point mutation exclusively detected in the recC of O2v1:KL64 significantly promotes recombination proficiency. The epidemic success of O2v1:KL64 was further associated with a hypervirulent sublineage with enhanced resistance to phagocytosis, sulfamethoxazole-trimethoprim, and tetracycline. The phenotypic alterations were linked to the overrepresentation of hypervirulence determinants and antibiotic genes conferred by the acquisition of an rmpA-positive pLVPK-like virulence plasmid and an IncFII-type multidrug-resistant plasmid, respectively. The dissemination of the sublineage was further promoted by more frequent inter-hospital transmission. The results collectively demonstrate that the expansion of O2v1:KL64 is correlated to a repertoire of genomic alterations convergent in a subpopulation with evolutionary advantages.
Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae/genética , Mutação Puntual , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , China/epidemiologia , Carbapenêmicos , beta-Lactamases/genéticaRESUMO
Oxford Nanopore Technologies (ONT) sequencing has rich potential for genomic epidemiology and public health investigations of bacterial pathogens, particularly in low-resource settings and at the point of care, due to its portability and affordability. However, low base-call accuracy has limited the reliability of ONT data for critical tasks such as antimicrobial resistance (AMR) and virulence gene detection and typing, serotype prediction, and cluster identification. Thus, Illumina sequencing remains the standard for genomic surveillance despite higher capital and running costs. We tested the accuracy of ONT-only assemblies for common applied bacterial genomics tasks (genotyping and cluster detection, implemented via Kleborate, Kaptive and Pathogenwatch), using data from 54 unique Klebsiella pneumoniae isolates. ONT reads generated via MinION with R9.4.1 flowcells were basecalled using three alternative models [Fast, High-accuracy (HAC) and Super-accuracy (SUP), available within ONT's Guppy software], assembled with Flye and polished using Medaka. Accuracy of typing using ONT-only assemblies was compared with that of Illumina-only and hybrid ONT+Illumina assemblies, constructed from the same isolates as reference standards. The most resource-intensive ONT-assembly approach (SUP basecalling, with or without Medaka polishing) performed best, yielding reliable capsule (K) type calls for all strains (100â% exact or best matching locus), reliable multi-locus sequence type (MLST) assignment (98.3â% exact match or single-locus variants), and good detection of acquired AMR genes and mutations (88-100â% correct identification across the various drug classes). Distance-based trees generated from SUP+Medaka assemblies accurately reflected overall genetic relationships between isolates. The definition of outbreak clusters from ONT-only assemblies was problematic due to inflation of SNP counts by high base-call errors. However, ONT data could be reliably used to 'rule out' isolates of distinct lineages from suspected transmission clusters. HAC basecalling + Medaka polishing performed similarly to SUP basecalling without polishing. Therefore, we recommend investing compute resources into basecalling (SUP model), wherever compute resources and time allow, and note that polishing is also worthwhile for improved performance. Overall, our results show that MLST, K type and AMR determinants can be reliably identified with ONT-only R9.4.1 flowcell data. However, cluster detection remains challenging with this technology.
Assuntos
Klebsiella pneumoniae , Nanoporos , Genômica , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus , Reprodutibilidade dos Testes , Sequenciamento Completo do Genoma/métodos , Farmacorresistência BacterianaRESUMO
BACKGROUND: Resistance to third-generation cephalosporins, often mediated by extended-spectrum beta-lactamases (ESBLs), is a considerable issue in hospital-associated infections as few drugs remain for treatment. ESBL genes are often located on large plasmids that transfer horizontally between strains and species of Enterobacteriaceae and frequently confer resistance to additional drug classes. Whilst plasmid transmission is recognised to occur in the hospital setting, the frequency and impact of plasmid transmission on infection burden, compared to ESBL + strain transmission, is not well understood. METHODS: We sequenced the genomes of clinical and carriage isolates of Klebsiella pneumoniae species complex from a year-long hospital surveillance study to investigate ESBL burden and plasmid transmission in an Australian hospital. Long-term persistence of a key transmitted ESBL + plasmid was investigated via sequencing of ceftriaxone-resistant isolates during 4 years of follow-up, beginning 3 years after the initial study. RESULTS: We found 25 distinct ESBL plasmids. We identified one plasmid, which we called Plasmid A, that carried blaCTX-M-15 in an IncF backbone similar to pKPN-307. Plasmid A was transmitted at least four times into different Klebsiella species/lineages and was responsible for half of all ESBL episodes during the initial 1-year study period. Three of the Plasmid A-positive strains persisted locally 3-6 years later, and Plasmid A was detected in two additional strain backgrounds. Overall Plasmid A accounted for 21% of ESBL + infections in the follow-up period. CONCLUSIONS: Here, we systematically surveyed ESBL strain and plasmid transmission over 1 year in a single hospital network. Whilst ESBL plasmid transmission events were rare in this setting, they had a significant and sustained impact on the burden of ceftriaxone-resistant and multidrug-resistant infections. If onward transmission of Plasmid A-carrying strains could have been prevented, this may have reduced the number of opportunities for Plasmid A to transmit and create novel ESBL + strains, as well as reducing overall ESBL infection burden.
Assuntos
Klebsiella pneumoniae , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Austrália/epidemiologia , Ceftriaxona , Hospitais , Humanos , Klebsiella pneumoniae/genética , Plasmídeos/genética , beta-Lactamases/genéticaRESUMO
BACKGROUND: Infections caused by Klebsiella oxytoca are the second most common cause of Klebsiella infections in humans. Most studies have focused on K. oxytoca outbreaks and few have examined the broader clinical context of K. oxytoca. METHODS: Here, we collected all clinical isolates identified as K. oxytoca in a hospital microbiological diagnostic lab across a 15-month period (n = 239). Whole genome sequencing was performed on a subset of 92 isolates (all invasive, third-generation cephalosporin resistant (3GCR) and non-urinary isolates collected > 48 h after admission), including long-read sequencing on a further six isolates with extended-spectrum beta-lactamase or carbapenemase genes. RESULTS: The majority of isolates were sensitive to antimicrobials, however 22 isolates were 3GCR, of which five were also carbapenem resistant. Genomic analyses showed those identified as K. oxytoca by the clinical laboratory actually encompassed four distinct species (K. oxytoca, Klebsiella michiganensis, Klebsiella grimontii and Klebsiella pasteurii), referred to as the K. oxytoca species complex (KoSC). There was significant diversity within the population, with only 10/67 multi-locus sequence types (STs) represented by more than one isolate. Strain transmission was rare, with only one likely event identified. Six isolates had extended spectrum beta-lactamase (blaSHV-12 and/or blaCTX-M-9) or carbapenemase (blaIMP-4) genes. One pair of K. michiganensis and K. pasteurii genomes carried identical blaIMP-4 IncL/M plasmids, indicative of plasmid transmission. CONCLUSION: Whilst antimicrobial resistance was rare, the resistance plasmids were similar to those found in other Enterobacterales, demonstrating that KoSC has access to the same plasmid reservoir and thus there is potential for multi-drug resistance. Further genomic studies are required to improve our understanding of the KoSC population and facilitate investigation into the attributes of successful nosocomial isolates.
Assuntos
Infecções por Klebsiella , Klebsiella oxytoca , Humanos , Antibacterianos/farmacologia , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla , Genômica , Hospitais , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Klebsiella oxytoca/genética , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Plasmídeos/genéticaRESUMO
The grey-headed flying fox (Pteropus poliocephalus) is an endemic Australian fruit bat, known to carry zoonotic pathogens. We recently showed they harbour bacterial pathogen Klebsiella pneumoniae and closely related species in the K. pneumoniae species complex (KpSC); however, the dynamics of KpSC transmission and gene flow within flying fox colonies are poorly understood. High-resolution genome comparisons of 39 KpSC isolates from grey-headed flying foxes identified five putative strain transmission clusters (four intra- and one inter-colony). The instance of inter-colony strain transmission of K. africana was found between two flying fox populations within flying distance, indicating either direct or indirect transmission through a common food/water source. All 11 plasmids identified within the KpSC isolates showed 73% coverage (mean) and ≥95% identity to human-associated KpSC plasmids, indicating gene flow between human clinical and grey-headed flying fox isolates. Along with strain transmission, inter-species horizontal plasmid transmission between K. pneumoniae and Klebsiella africana was also identified within a flying fox colony. Finally, genome-scale metabolic models were generated to predict and compare substrate usage to previously published KpSC models, from human and environmental sources. These models indicated no distinction on the basis of metabolic capabilities. Instead, metabolic capabilities were consistent with population structure and ST/lineage.
Assuntos
Quirópteros , Animais , Austrália/epidemiologia , Quirópteros/microbiologia , Humanos , Klebsiella , Plasmídeos/genética , ÁguaRESUMO
Klebsiella pneumoniae (Kp) has emerged as a global life-threatening pathogen owing to its multidrug resistance and hypervirulence phenotype. Several fatal outbreaks of carbapenem-resistant hypervirulent Kp have been reported recently. Hypermucoviscosity (HMV) is a phenotype commonly associated with hypervirulence of Kp, which is usually regulated by rmpA or rmpA2 (regulators of the mucoid phenotype). Here, we found that temperature was important in the HMV phenotype of Kp, and the impact of temperature on HMV was not uniform among strains. We investigated the HMV phenotype at 37 °C and room temperature (20-25 °C) in 170 clinically isolated hypermucoviscous Kp strains in Japan and analysed the association between the HMV phenotype, virulence genes and antimicrobial resistance (AMR) genes. String length distribution at different temperatures was correlated with the genomic population of Kp. The strains carrying rmpA/rmpA2 frequently showed the HMV phenotype at 37 °C, while the strains negative for these genes tended to show the HMV phenotype at room temperature. Hypervirulent Kp clusters carrying rmpA/rmpA2 without extended-spectrum beta-lactamases (ESBL)/carbapenemases produced higher string lengths at 37 °C than at room temperature, and were mostly isolated from the respiratory tract. Other HMV strains showed distinct characteristics of not carrying rmpA/rmpA2 but were positive for ESBL/carbapenemases, with a higher string length at room temperature than at 37 °C, and were frequently isolated from bloodstream infections. In total, 21 (13.5â%) HMV isolates carried ESBL and carbapenemases, among which five isolates were carbapenem-resistant hypervirulent Kp with a pLVPK-like plasmid (an epidemic virulence plasmid) and a pKPI-6-like plasmid (an epidemic blaIMP-6-bearing plasmid in Japan), suggesting the convergence of worldwide hypervirulence and epidemic AMR in Japan.
Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Carbapenêmicos/farmacologia , Genômica , Humanos , Japão/epidemiologia , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae , TemperaturaRESUMO
Klebsiella pneumoniae is a major cause of opportunistic healthcare-associated infections, which are increasingly complicated by the presence of extended-spectrum beta-lactamases (ESBLs) and carbapenem resistance. We conducted a year-long prospective surveillance study of K. pneumoniae clinical isolates in hospital patients. Whole-genome sequence (WGS) data reveals a diverse pathogen population, including other species within the K. pneumoniae species complex (18%). Several infections were caused by K. variicola/K. pneumoniae hybrids, one of which shows evidence of nosocomial transmission. A wide range of antimicrobial resistance (AMR) phenotypes are observed, and diverse genetic mechanisms identified (mainly plasmid-borne genes). ESBLs are correlated with presence of other acquired AMR genes (median n = 10). Bacterial genomic features associated with nosocomial onset are ESBLs (OR 2.34, p = 0.015) and rhamnose-positive capsules (OR 3.12, p < 0.001). Virulence plasmid-encoded features (aerobactin, hypermucoidy) are observed at low-prevalence (<3%), mostly in community-onset cases. WGS-confirmed nosocomial transmission is implicated in just 10% of cases, but strongly associated with ESBLs (OR 21, p < 1 × 10-11). We estimate 28% risk of onward nosocomial transmission for ESBL-positive strains vs 1.7% for ESBL-negative strains. These data indicate that K. pneumoniae infections in hospitalised patients are due largely to opportunistic infections with diverse strains, with an additional burden from nosocomially-transmitted AMR strains and community-acquired hypervirulent strains.
Assuntos
Infecção Hospitalar , Infecções por Klebsiella , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Genômica , Hospitais , Humanos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae , Estudos ProspectivosRESUMO
Linear plasmids are extrachromosomal DNA elements that have been found in a small number of bacterial species. To date, the only linear plasmids described in the family Enterobacteriaceae belong to Salmonella, first found in Salmonella enterica Typhi. Here, we describe a collection of 12 isolates of the Klebsiella pneumoniae species complex in which we identified linear plasmids. Screening of assembly graphs assembled from public read sets identified linear plasmid structures in a further 13 K. pneumoniae species complex genomes. We used these 25 linear plasmid sequences to query all bacterial genome assemblies in the National Center for Biotechnology Information database, and discovered an additional 61 linear plasmid sequences in a variety of Enterobacteriaceae species. Gene content analysis divided these plasmids into five distinct phylogroups, with very few genes shared across more than two phylogroups. The majority of linear plasmid-encoded genes are of unknown function; however, each phylogroup carried its own unique toxin-antitoxin system and genes with homology to those encoding the ParAB plasmid stability system. Passage in vitro of the 12 linear plasmid-carrying Klebsiella isolates in our collection (which include representatives of all five phylogroups) indicated that these linear plasmids can be stably maintained, and our data suggest they can transmit between K. pneumoniae strains (including members of globally disseminated multidrug-resistant clones) and also between diverse Enterobacteriaceae species. The linear plasmid sequences, and representative isolates harbouring them, are made available as a resource to facilitate future studies on the evolution and function of these novel plasmids.
Assuntos
Klebsiella , beta-Lactamases , Antibacterianos , Klebsiella/genética , Klebsiella pneumoniae/genética , Plasmídeos/genética , beta-Lactamases/genéticaRESUMO
The outer polysaccharide capsule and lipopolysaccharide (LPS) antigens are key targets for novel control strategies targeting Klebsiella pneumoniae and related taxa from the K. pneumoniae species complex (KpSC), including vaccines, phage and monoclonal antibody therapies. Given the importance and growing interest in these highly diverse surface antigens, we had previously developed Kaptive, a tool for rapidly identifying and typing capsule (K) and outer LPS (O) loci from whole genome sequence data. Here, we report two significant updates, now freely available in Kaptive 2.0 (https://github.com/katholt/kaptive): (i) the addition of 16 novel K locus sequences to the K locus reference database following an extensive search of >17â¯000 KpSC genomes; and (ii) enhanced O locus typing to enable prediction of the clinically relevant O2 antigen (sub)types, for which the genetic determinants have been recently described. We applied Kaptive 2.0 to a curated dataset of >12â¯000 public KpSC genomes to explore for the first time, to the best of our knowledge, the distribution of predicted O (sub)types across species, sampling niches and clones, which highlighted key differences in the distributions that warrant further investigation. As the uptake of genomic surveillance approaches continues to expand globally, the application of Kaptive 2.0 will generate novel insights essential for the design of effective KpSC control strategies.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Genômica , Humanos , Klebsiella , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , LipopolissacarídeosRESUMO
The Klebsiella pneumoniae species complex (KpSC) is a set of seven Klebsiella taxa that are found in a variety of niches and are an important cause of opportunistic health care-associated infections in humans. Because of increasing rates of multi-drug resistance within the KpSC, there is a growing interest in better understanding the biology and metabolism of these organisms to inform novel control strategies. We collated 37 sequenced KpSC isolates isolated from a variety of niches, representing all seven taxa. We generated strain-specific genome-scale metabolic models (GEMs) for all 37 isolates and simulated growth phenotypes on 511 distinct carbon, nitrogen, sulfur, and phosphorus substrates. Models were curated and their accuracy was assessed using matched phenotypic growth data for 94 substrates (median accuracy of 96%). We explored species-specific growth capabilities and examined the impact of all possible single gene deletions using growth simulations in 145 core carbon substrates. These analyses revealed multiple strain-specific differences, within and between species, and highlight the importance of selecting a diverse range of strains when exploring KpSC metabolism. This diverse set of highly accurate GEMs could be used to inform novel drug design, enhance genomic analyses, and identify novel virulence and resistance determinants. We envisage that these 37 curated strain-specific GEMs, covering all seven taxa of the KpSC, provide a valuable resource to the Klebsiella research community.
Assuntos
Infecções por Klebsiella , Klebsiella , Carbono , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Humanos , Klebsiella/genética , Infecções por Klebsiella/genética , Klebsiella pneumoniae/genética , Virulência/genéticaRESUMO
INTRODUCTION: The use of oral fosfomycin for urinary tract infections (UTIs) caused by non-Escherichia coli uropathogens is uncertain, including Klebsiella pneumoniae, the second most common uropathogen. METHODS: A multicompartment bladder infection in vitro model was used with standard media and synthetic human urine (SHU) to simulate urinary fosfomycin exposure after a single 3â g oral dose (fAUC0-72 16884â mg·h/L, t½ 5.5â h) against 15 K. pneumoniae isolates including ATCC 13883 (MIC 2 to >1024â mg/L) with a constant media inflow (20â mL/h) and 4-hourly voiding of each bladder. The impact of the media (CAMHB + G6P versus SHU) on fosfomycin MIC measurements, drug-free growth kinetics and regrowth after fosfomycin administration was assessed. A low and high starting inoculum (5.5 versus 7.5 log10 cfu/mL) was assessed in the bladder infection model. RESULTS: Compared with CAMHB, isolates in SHU had a slower growth rate doubling time (37.7 versus 24.1â min) and reduced growth capacity (9.0 ± 0.3 versus 9.4 ± 0.3â log10 cfu/mL), which was further restricted with increased inflow rate (40â mL/h) and more frequent voids (2-hourly). Regrowth was commonly observed in both media with emergence of fosfomycin resistance promoted by a high starting inoculum in CAMHB (MIC rise to ≥1024â mg/L in 13/14 isolates). Resistance was rarely detected in SHU, even with a high starting inoculum (MIC rise to ≥1024â mg/L in 2/14 isolates). CONCLUSIONS: Simulated in an in vitro UTI model, the regrowth of K. pneumoniae urinary isolates was inadequately suppressed following oral fosfomycin therapy. Efficacy was further reduced by a high starting inoculum.