Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Neuroimage ; 265: 119762, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427752

RESUMO

Glucose is the main energy source in the brain and its regulated uptake and utilization are important biomarkers of pathological brain function. Glucose Chemical Exchange Saturation Transfer (GlucoCEST) and its time-resolved version Dynamic Glucose-Enhanced MRI (DGE) are promising approaches to monitor glucose and detect tumors, since they are radioactivity-free, do not require 13C labeling and are is easily translatable to the clinics. The main principle of DGE is clear. However, what remains to be established is to which extent the signal reflects vascular, extracellular or intracellular glucose. To elucidate the compartmental contributions to the DGE signal, we coupled it with FRET-based fiber photometry of genetically encoded sensors, a technique that combines quantitative glucose readout with cellular specificity. The glucose sensor FLIIP was used with fiber photometry to measure astrocytic and neuronal glucose changes upon injection of D-glucose, 3OMG and L-glucose, in the anaesthetized murine brain. By correlating the kinetic profiles of the techniques, we demonstrate the presence of a vascular contribution to the signal, especially at early time points after injection. Furthermore, we show that, in the case of the commonly used contrast agent 3OMG, the DGE signal actually anticorrelates with the glucose concentration in neurons and astrocytes.


Assuntos
Neoplasias Encefálicas , Glucose , Camundongos , Animais , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Fotometria
2.
Neural Regen Res ; 18(3): 547-548, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36018171
3.
Neurotherapeutics ; 19(5): 1603-1616, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35821382

RESUMO

Purinergic 2 receptors (P2Rs) contribute to disease-related immune cell signaling and are upregulated in various pathological settings, including neuroinflammation. P2R inhibitors have been used to treat inflammatory diseases and can protect against complement-mediated cell injury. However, the mechanisms behind these anti-inflammatory properties of P2R inhibitors are not well understood, and their potential in CNS autoimmunity is underexplored. Here, we tested the effects of P2R inhibitors on glial toxicity in a mouse model of neuromyelitis optica spectrum disorder (NMOSD). NMOSD is a destructive CNS autoimmune disorder, in which autoantibodies against astrocytic surface antigen Aquaporin 4 (AQP4) mediate complement-dependent loss of astrocytes. Using two-photon microscopy in vivo, we found that various classes of P2R inhibitors prevented AQP4-IgG/complement-dependent astrocyte death. In vitro, these drugs inhibited the binding of AQP4-IgG or MOG-IgG to their antigen in a dose-dependent manner. Size-exclusion chromatography and circular dichroism spectroscopy revealed a partial unfolding of antibodies in the presence of various P2R inhibitors, suggesting a shared interference with IgG antibodies leading to their conformational change. Our study demonstrates that P2R inhibitors can disrupt complement activation by direct interaction with IgG. This mechanism is likely to influence the role of P2R inhibitors in autoimmune disease models and their therapeutic impact in human disease.


Assuntos
Neuromielite Óptica , Animais , Camundongos , Humanos , Neuromielite Óptica/tratamento farmacológico , Aquaporina 4 , Autoanticorpos/metabolismo , Imunoglobulina G/farmacologia , Ativação do Complemento , Modelos Animais de Doenças , Astrócitos/metabolismo , Antígenos de Superfície/metabolismo , Antígenos de Superfície/farmacologia
4.
STAR Protoc ; 3(2): 101370, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35573482

RESUMO

The ability to quantify partial pressure of oxygen (pO2) is of primary importance for studies of metabolic processes in health and disease. Here, we present a protocol for imaging of oxygen distributions in tissue and vasculature of the cerebral cortex of anesthetized and awake mice. We describe in vivo two-photon phosphorescence lifetime microscopy (2PLM) of oxygen using the probe Oxyphor 2P. This minimally invasive protocol outperforms existing approaches in terms of accuracy, resolution, and imaging depth. For complete details on the use and execution of this protocol, please refer to Esipova et al. (2019).


Assuntos
Microscopia , Oxigênio , Animais , Córtex Cerebral/diagnóstico por imagem , Camundongos , Microscopia/métodos , Oxigênio/metabolismo , Pressão Parcial , Fótons
5.
Sensors (Basel) ; 21(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34770344

RESUMO

(1) Background: Small Animal Fast Insert for MRI detector I (SAFIR-I) is a preclinical Positron Emission Tomography (PET) insert for the Bruker BioSpec 70/30 Ultra Shield Refrigerated (USR) preclinical 7T Magnetic Resonance Imaging (MRI) system. It is designed explicitly for high-rate kinetic studies in mice and rats with injected activities reaching 500MBq, enabling truly simultaneous quantitative PET and Magnetic Resonance (MR) imaging with time frames of a few seconds in length. (2) Methods: SAFIR-I has an axial field of view of 54.2mm and an inner diameter of 114mm. It employs Lutetium Yttrium OxyorthoSilicate (LYSO) crystals and Multi Pixel Photon Counter (MPPC) arrays. The Position-Energy-Timing Application Specific Integrated Circuit, version 6, Single Ended (PETA6SE) digitizes the MPPC signals and provides time stamps and energy information. (3) Results: SAFIR-I is MR-compatible. The system's Coincidence Resolving Time (CRT) and energy resolution are between separate-uncertainty 209.0(3)ps and separate-uncertainty 12.41(02) Full Width at Half Maximum (FWHM) at low activity and separate-uncertainty 326.89(12)ps and separate-uncertainty 20.630(011) FWHM at 550MBq, respectively. The peak sensitivity is ∼1.6. The excellent performance facilitated the successful execution of first in vivo rat studies beyond 300MBq. Based on features visible in the acquired images, we estimate the spatial resolution to be ∼2mm in the center of the Field Of View (FOV). (4) Conclusion: The SAFIR-I PET insert provides excellent performance, permitting simultaneous in vivo small animal PET/MR image acquisitions with time frames of a few seconds in length at activities of up to 500MBq.


Assuntos
Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Animais , Desenho de Equipamento , Cinética , Camundongos , Imagens de Fantasmas , Fótons , Ratos
7.
Cell Rep ; 33(2): 108260, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053341

RESUMO

Despite successful clot retrieval in large vessel occlusion stroke, ∼50% of patients have an unfavorable clinical outcome. The mechanisms underlying this functional reperfusion failure remain unknown, and therapeutic options are lacking. In the thrombin-model of middle cerebral artery (MCA) stroke in mice, we show that, despite successful thrombolytic recanalization of the proximal MCA, cortical blood flow does not fully recover. Using in vivo two-photon imaging, we demonstrate that this is due to microvascular obstruction of ∼20%-30% of capillaries in the infarct core and penumbra by neutrophils adhering to distal capillary segments. Depletion of circulating neutrophils using an anti-Ly6G antibody restores microvascular perfusion without increasing the rate of hemorrhagic complications. Strikingly, infarct size and functional deficits are smaller in mice treated with anti-Ly6G. Thus, we propose neutrophil stalling of brain capillaries to contribute to reperfusion failure, which offers promising therapeutic avenues for ischemic stroke.


Assuntos
Isquemia Encefálica/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Capilares/patologia , Neutrófilos/patologia , Fenômeno de não Refluxo/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Anticorpos/metabolismo , Antígenos Ly , Comportamento Animal , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos BALB C , Artéria Cerebral Média/patologia , Artéria Cerebral Média/fisiopatologia , Fenômeno de não Refluxo/patologia , Trombina
8.
Nat Metab ; 2(2): 179-191, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32694692

RESUMO

It has been suggested that, in states of arousal, release of noradrenaline and ß-adrenergic signalling affect long-term memory formation by stimulating astrocytic lactate production from glycogen. However, the temporal relationship between cortical activity and cellular lactate fluctuations upon changes in arousal remains to be fully established. Also, the role of ß-adrenergic signalling and brain glycogen metabolism on neural lactate dynamics in vivo is still unknown. Here, we show that an arousal-induced increase in cortical activity triggers lactate release into the extracellular space, and this correlates with a fast and prominent lactate dip in astrocytes. The immediate drop in astrocytic lactate concentration and the parallel increase in extracellular lactate levels underline an activity-dependent lactate release from astrocytes. Moreover, when ß-adrenergic signalling is blocked or the brain is depleted of glycogen, the arousal-evoked cellular lactate surges are significantly reduced. We provide in vivo evidence that cortical activation upon arousal triggers lactate release from astrocytes, a rise in intracellular lactate levels mediated by ß-adrenergic signalling and the mobilization of lactate from glycogen stores.


Assuntos
Nível de Alerta , Astrócitos/metabolismo , Córtex Cerebral/fisiologia , Ácido Láctico/metabolismo , Animais , Córtex Cerebral/metabolismo , Eletroencefalografia , Camundongos , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais
9.
Nat Protoc ; 15(8): 2301-2320, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32632319

RESUMO

The locus coeruleus (LC) is a region in the brainstem that produces noradrenaline and is involved in both normal and pathological brain function. Pupillometry, the measurement of pupil diameter, provides a powerful readout of LC activity in rodents, primates and humans. The protocol detailed here describes a miniaturized setup that can screen LC activity in rodents in real-time and can be established within 1-2 d. Using low-cost Raspberry Pi computers and cameras, the complete custom-built system costs only ~300 euros, is compatible with stereotaxic surgery frames and seamlessly integrates into complex experimental setups. Tools for pupil tracking and a user-friendly Pupillometry App allow quantification, analysis and visualization of pupil size. Pupillometry can discriminate between different, physiologically relevant firing patterns of the LC and can accurately report LC activation as measured by noradrenaline turnover. Pupillometry provides a rapid, non-invasive readout that can be used to verify accurate placement of electrodes/fibers in vivo, thus allowing decisions about the inclusion/exclusion of individual animals before experiments begin.


Assuntos
Locus Cerúleo/fisiologia , Monitorização Fisiológica/instrumentação , Pupila/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
10.
Cell Rep ; 22(5): 1105-1114, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29386099

RESUMO

Avoidance of environmental dangers depends on nociceptive topognosis, or the ability to localize painful stimuli. This is proposed to rely on somatotopic maps arising from topographically organized point-to-point connections between the body surface and the CNS. To determine the role of topographic organization of spinal ascending projections in nociceptive topognosis, we generated a conditional knockout mouse lacking expression of the netrin1 receptor DCC in the spinal cord. These mice have an increased number of ipsilateral spinothalamic connections and exhibit aberrant activation of the somatosensory cortex in response to unilateral stimulation. Furthermore, spinal cord-specific Dcc knockout animals displayed mislocalized licking responses to formalin injection, indicating impaired topognosis. Similarly, humans with DCC mutations experience bilateral sensation evoked by unilateral somatosensory stimulation. Collectively, our results constitute functional evidence of the importance of topographic organization of spinofugal connections for nociceptive topognosis.


Assuntos
Receptor DCC/metabolismo , Nociceptividade/fisiologia , Animais , Mapeamento Encefálico , Humanos , Camundongos , Camundongos Knockout , Vias Neurais/metabolismo , Córtex Somatossensorial/metabolismo , Medula Espinal/metabolismo
11.
Neuro Oncol ; 18(5): 744-51, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26578622

RESUMO

BACKGROUND: Patients with WHO grade II glioma may respond to chemotherapy that is currently not standardized regarding timing and treatment duration. Metabolic changes during chemotherapy may precede structural tumor volume reductions. We therefore compared time courses of amino acid PET and MRI responses to temozolomide (TMZ) and assessed whether responses correlated with seizure control and progression-free survival (PFS). METHODS: PET and MRI were performed before and during TMZ chemotherapy. Tumor volumes were calculated using regions-of-interest analysis. Amino acid uptake was also quantified as metabolically active tumor volume and tumor-to-cerebellum uptake ratio. RESULTS: One hundred twenty-five PET and 125 MRI scans from 33 patients were analyzed. Twenty-five patients showed metabolic responses that exhibited an exponential time course with a 25% reduction of the active volume on average after 2.3 months. MRI responses followed a linear course with a 25% reduction after 16.8 months. Reduction of metabolically active tumor volumes, but not reduction of PET uptake ratios or MRI tumor volumes, correlated with improved seizure control following chemotherapy (P = .012). Receiver-operating-characteristic curve analysis showed that a decrease of the active tumor volume of ≥80.5% predicts a PFS of ≥60 months (P = .018) and a decrease of ≥64.5% a PFS of ≥48 months (P = .037). CONCLUSIONS: Amino acid PET is superior to MRI for evaluating TMZ responses in WHO grade II glioma patients. The response delay between both imaging modalities favors amino acid PET for individually tailoring the duration of chemotherapy. Additional studies should investigate whether this personalized approach is appropriate with regard to outcome.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Adulto , Aminoácidos , Antineoplásicos/uso terapêutico , Área Sob a Curva , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Intervalo Livre de Doença , Feminino , Glioma/tratamento farmacológico , Glioma/mortalidade , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Curva ROC , Convulsões/etiologia , Sensibilidade e Especificidade , Temozolomida , Adulto Jovem
12.
Cell Metab ; 23(1): 94-102, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26698914

RESUMO

Investigating lactate dynamics in brain tissue is challenging, partly because in vivo data at cellular resolution are not available. We monitored lactate in cortical astrocytes and neurons of mice using the genetically encoded FRET sensor Laconic in combination with two-photon microscopy. An intravenous lactate injection rapidly increased the Laconic signal in both astrocytes and neurons, demonstrating high lactate permeability across tissue. The signal increase was significantly smaller in astrocytes, pointing to higher basal lactate levels in these cells, confirmed by a one-point calibration protocol. Trans-acceleration of the monocarboxylate transporter with pyruvate was able to reduce intracellular lactate in astrocytes but not in neurons. Collectively, these data provide in vivo evidence for a lactate gradient from astrocytes to neurons. This gradient is a prerequisite for a carrier-mediated lactate flux from astrocytes to neurons and thus supports the astrocyte-neuron lactate shuttle model, in which astrocyte-derived lactate acts as an energy substrate for neurons.


Assuntos
Astrócitos/metabolismo , Ácido Láctico/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Metabolismo Energético , Feminino , Camundongos Endogâmicos C57BL , Microscopia Confocal
13.
Biomed Opt Express ; 6(11): 4228-37, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26600989

RESUMO

We present a cost-effective in vivo two-photon microscope with a highly flexible frontend for in vivo research. Our design ensures fast and reproducible access to the area of interest, including rotation of imaging plane, and maximizes space for auxiliary experimental equipment in the vicinity of the animal. Mechanical flexibility is achieved with large motorized linear stages that move the objective in the X, Y, and Z directions up to 130 mm. 360° rotation of the frontend (rotational freedom for one axis) is achieved with the combination of a motorized high precision bearing and gearing. Additionally, the modular design of the frontend, based on commercially available optomechanical parts, allows straightforward updates to future scanning technologies. The design exceeds the mobility of previous movable microscope designs while maintaining high optical performance.

14.
Proc Natl Acad Sci U S A ; 112(35): 11090-5, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26286989

RESUMO

Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K(+) as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4(+), a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4(+) with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4(+) and in the somatosensory cortex of anesthetized mice in response to i.v. NH4(+). Unexpectedly, NH4(+) had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4(+) diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4(+) is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4(+) behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes.


Assuntos
Compostos de Amônio/metabolismo , Astrócitos/metabolismo , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Ácido Pirúvico/metabolismo , Animais , Camundongos
15.
J Cereb Blood Flow Metab ; 35(10): 1561-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26036941

RESUMO

Lactate has been shown to offer neuroprotection in several pathologic conditions. This beneficial effect has been attributed to its use as an alternative energy substrate. However, recent description of the expression of the HCA1 receptor for lactate in the central nervous system calls for reassessment of the mechanism by which lactate exerts its neuroprotective effects. Here, we show that HCA1 receptor expression is enhanced 24 hours after reperfusion in an middle cerebral artery occlusion stroke model, in the ischemic cortex. Interestingly, intravenous injection of L-lactate at reperfusion led to further enhancement of HCA1 receptor expression in the cortex and striatum. Using an in vitro oxygen-glucose deprivation model, we show that the HCA1 receptor agonist 3,5-dihydroxybenzoic acid reduces cell death. We also observed that D-lactate, a reputedly non-metabolizable substrate but partial HCA1 receptor agonist, also provided neuroprotection in both in vitro and in vivo ischemia models. Quite unexpectedly, we show D-lactate to be partly extracted and oxidized by the rodent brain. Finally, pyruvate offered neuroprotection in vitro whereas acetate was ineffective. Our data suggest that L- and D-lactate offer neuroprotection in ischemia most likely by acting as both an HCA1 receptor agonist for non-astrocytic (most likely neuronal) cells as well as an energy substrate.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Ácido Láctico/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Isquemia Encefálica/patologia , Isquemia Encefálica/psicologia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Morte Celular , Glucose/deficiência , Hipocampo/efeitos dos fármacos , Hipóxia Encefálica/patologia , Imuno-Histoquímica , Cinética , Masculino , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Órgãos , Transdução de Sinais/fisiologia , Estereoisomerismo
16.
J Neurosci ; 35(10): 4168-78, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25762664

RESUMO

Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K(+) or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.


Assuntos
Astrócitos/efeitos dos fármacos , Canais Iônicos/fisiologia , Ácido Láctico/metabolismo , Potássio/farmacologia , Animais , Animais Recém-Nascidos , Bário/farmacologia , Cádmio/farmacologia , Células Cultivadas , Córtex Cerebral/citologia , Feminino , Fluoresceínas/metabolismo , Glicogênio/metabolismo , Humanos , Técnicas In Vitro , Canais Iônicos/efeitos dos fármacos , Íons/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ácido Pirúvico/farmacologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Transfecção
17.
Stroke ; 44(7): 1957-64, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23735955

RESUMO

BACKGROUND AND PURPOSE: Arterial hypertension is an important risk factor for cerebrovascular diseases, such as transient ischemic attacks or stroke, and represents a major global health issue. The effects of hypertension on cerebral blood flow, particularly at the microvascular level, remain unknown. METHODS: Using the spontaneously hypertensive rat (SHR) model, we examined cortical hemodynamic responses on whisker stimulation applying a multimodal imaging approach (multiwavelength spectroscopy, laser speckle imaging, and 2-photon microscopy). We assessed the effects of hypertension in 10-, 20-, and 40-week-old male SHRs and age-matched male Wistar Kyoto rats (CTRL) on hemodynamic responses, histology, and biochemical parameters. In 40-week-old animals, losartan or verapamil was administered for 10 weeks to test the reversibility of hypertension-induced impairments. RESULTS: Increased arterial blood pressure was associated with a progressive impairment in functional hyperemia in 20- and 40-week-old SHRs; baseline capillary red blood cell velocity was increased in 40-week-old SHRs compared with age-matched CTRLs. Antihypertensive treatment reduced baseline capillary cerebral blood flow almost to CTRL values, whereas functional hyperemic signals did not improve after 10 weeks of drug therapy. Structural analyses of the microvascular network revealed no differences between normo- and hypertensive animals, whereas expression analyses of cerebral lysates showed signs of increased oxidative stress and signs of impaired endothelial homeostasis upon early hypertension. CONCLUSIONS: Impaired neurovascular coupling in the SHR evolves upon sustained hypertension. Antihypertensive monotherapy using verapamil or losartan is not sufficient to abolish this functional impairment. These deficits in neurovascular coupling in response to sustained hypertension might contribute to accelerate progression of neurodegenerative diseases in chronic hypertension.


Assuntos
Anti-Hipertensivos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Animais , Anti-Hipertensivos/administração & dosagem , Bloqueadores dos Canais de Cálcio/administração & dosagem , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Losartan/administração & dosagem , Losartan/farmacologia , Masculino , Microscopia de Fluorescência por Excitação Multifotônica , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espectrometria por Raios X , Verapamil/administração & dosagem , Verapamil/farmacologia
18.
Glia ; 61(4): 601-10, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23339077

RESUMO

Astrocytes play a crucial role in maintaining neuronal function and monitoring their activity. According to neuronal activity maps, the body is represented topographically in the somatosensory cortex. In rats, neighboring cortical areas receive forelimb (FL) and hindlimb (HL) sensory inputs. Whether astrocytic activity is also restricted to the cortical area receiving the respective peripheral sensory inputs is not known. Using wide field optical imaging we measured changes in the concentration of astrocytic calcium within the FL and HL sensorimotor cortex in response to peripheral sensory inputs. Mapping the calcium signals upon electrical stimulation of the forepaw and hindpaw we found activity largely restricted to the FL and HL area, respectively. In comparison to neuronal activity the time course of the astrocytic calcium activity was considerably slower. The signal took 6 s to peak after the onset of a 2 Hz and 2 s long electrical stimulation of the hindpaw and 8 s for a 4 s stimulation. The astrocytic signals were delayed relative to cerebral blood flow measured using laser speckle imaging. The intensity of both the astrocytic and neuronal signals in the HL sensorimotor cortex declined with increase in stimulation frequency. Moreover, blocking neuronal input by tetrodotoxin abolished astrocytic calcium signals. We suggest that the topographical representation of the body is not only true for cortical neurons but also for astrocytes. The maps and the frequency-dependent activations reflect strong reciprocal neuroglial communication and provide a new experimental approach to explore the role of astrocytes in health and disease.


Assuntos
Astrócitos/fisiologia , Mapeamento Encefálico/métodos , Sinalização do Cálcio/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Animais , Astrócitos/metabolismo , Estimulação Elétrica/métodos , Feminino , Corantes Fluorescentes/metabolismo , Membro Anterior/inervação , Compostos Heterocíclicos com 3 Anéis/metabolismo , Membro Posterior/inervação , Neuroimagem/métodos , Ratos , Ratos Endogâmicos Lew , Córtex Somatossensorial/metabolismo
19.
J Nucl Med ; 54(1): 132-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23160788

RESUMO

UNLABELLED: Kinetic modeling of PET data derived from mouse models remains hampered by the technical inaccessibility of an accurate input function (IF). In this work, we tested the feasibility of IF measurement with an arteriovenous shunt and a coincidence counter in mice and compared the method with an image-derived IF (IDIF) obtained by ensemble-learning independent component analysis of the heart region. METHODS: (18)F-FDG brain kinetics were quantified in 2 mouse strains, CD1 and C57BL/6, using the standard 2-tissue-compartment model. Fits obtained with the 2 IFs were compared regarding their goodness of fit as assessed by the residuals, fit parameter SD, and Bland-Altman analysis. RESULTS: On average, cerebral glucose metabolic rate was 10% higher for IDIF-based quantification. The precision of model parameter fitting was significantly higher using the shunt-based IF, rendering the quantification of single process rate constants feasible. CONCLUSION: We demonstrated that the arterial IF can be measured in mice with a femoral arteriovenous shunt. This technique resulted in higher precision for kinetic modeling parameters than did use of the IDIF. However, for longitudinal or high-throughput studies, the use of a minimally invasive IDIF based on ensemble-learning independent component analysis represents a suitable alternative.


Assuntos
Artérias/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Fluordesoxiglucose F18 , Glucose/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Artérias/diagnóstico por imagem , Fluordesoxiglucose F18/metabolismo , Cinética , Masculino , Camundongos , Modelos Biológicos
20.
Neuroimage ; 59(4): 3922-32, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21996132

RESUMO

Although alterations of serotonin (5-HT) system functioning have been proposed for a variety of psychiatric disorders, a direct method quantitatively assessing 5-HT release capacity in the living human brain is still lacking. Therefore, we evaluated a novel method to assess 5-HT release capacity in vivo using dexfenfluramine challenge and [(18)F]altanserin positron emission tomography (PET). Thirteen healthy male subjects received placebo and single oral doses of 40 mg (n = 6) or 60 mg (n = 7) of the potent 5-HT releaser dexfenfluramine separated by an interval of 14 days. Three further subjects received placebo on both days. Two hours after placebo/drug administration, 250 MBq of the 5-HT(2A) receptor selective PET-radiotracer [(18)F]altanserin was administered intravenously as a 30s bolus. Dynamic PET data were subsequently acquired over 90 min. Moreover, arterial blood samples were drawn for measurement of total activity and metabolite correction of the input function. Dexfenfluramine as well as cortisol and prolactin plasma concentration-time profiles was quantitatively determined. Tracer distribution volumes for five volumes-of-interest (prefrontal and occipital cortex, insula, thalamus, caudatum) were calculated by the Logan plot and a 2-tissue compartment model. Dexfenfluramine dose-dependently decreased the total distribution volume of [(18)F]altanserin in cortical regions independent of the PET modeling approach. Cortisol and prolactin plasma concentrations were dose-dependently increased by dexfenfluramine. The decrease in cortical [(18)F]altanserin receptor binding under dexfenfluramine was correlated with the increase of plasma prolactin. These data suggest that the combination of a dexfenfluramine-induced 5-HT release and subsequent assessment of 5-HT(2A) receptor availability with [(18)F]altanserin PET is suitable to measure cortical 5-HT release capacity in the human brain.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Dexfenfluramina , Radioisótopos de Flúor , Ketanserina/análogos & derivados , Tomografia por Emissão de Pósitrons , Agonistas do Receptor de Serotonina , Serotonina/metabolismo , Adulto , Método Duplo-Cego , Humanos , Masculino , Tomografia por Emissão de Pósitrons/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA