Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Reprod ; 37(6): 1360-1369, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35413117

RESUMO

STUDY QUESTION: Are there more de novo mutations (DNMs) present in the genomes of children born through medical assisted reproduction (MAR) compared to spontaneously conceived children? SUMMARY ANSWER: In this pilot study, no statistically significant difference was observed in the number of DNMs observed in the genomes of MAR children versus spontaneously conceived children. WHAT IS KNOWN ALREADY: DNMs are known to play a major role in sporadic disorders with reduced fitness such as severe developmental disorders, including intellectual disability and epilepsy. Advanced paternal age is known to place offspring at increased disease risk, amongst others by increasing the number of DNMs in their genome. There are very few studies reporting on the effect of MAR on the number of DNMs in the offspring, especially when male infertility is known to be affecting the potential fathers. With delayed parenthood an ongoing epidemiological trend in the 21st century, there are more children born from fathers of advanced age and more children born through MAR every day. STUDY DESIGN, SIZE, DURATION: This observational pilot study was conducted from January 2015 to March 2019 in the tertiary care centre at Radboud University Medical Center. We included a total of 53 children and their respective parents, forming 49 trios (mother, father and child) and two quartets (mother, father and two siblings). One group of children was born after spontaneous conception (n = 18); a second group of children born after IVF (n = 17) and a third group of children born after ICSI combined with testicular sperm extraction (ICSI-TESE) (n = 18). In this pilot study, we also subdivided each group by paternal age, resulting in a subgroup of children born to younger fathers (<35 years of age at conception) and older fathers (>45 years of age at conception). PARTICIPANTS/MATERIALS, SETTING, METHODS: Whole-genome sequencing (WGS) was performed on all parent-offspring trios to identify DNMs. For 34 of 53 trios/quartets, WGS was performed twice to independently detect and validate the presence of DNMs. Quality of WGS-based DNM calling was independently assessed by targeted Sanger sequencing. MAIN RESULTS AND THE ROLE OF CHANCE: No significant differences were observed in the number of DNMs per child for the different methods of conception, independent of parental age at conception (multi-factorial ANOVA, f(2) = 0.17, P-value = 0.85). As expected, a clear paternal age effect was observed after adjusting for method of conception and maternal age at conception (multiple regression model, t = 5.636, P-value = 8.97 × 10-7), with on average 71 DNMs in the genomes of children born to young fathers (<35 years of age) and an average of 94 DNMs in the genomes of children born to older fathers (>45 years of age). LIMITATIONS, REASONS FOR CAUTION: This is a pilot study and other small-scale studies have recently reported contrasting results. Larger unbiased studies are required to confirm or falsify these results. WIDER IMPLICATIONS OF THE FINDINGS: This pilot study did not show an effect for the method of conception on the number of DNMs per genome in offspring. Given the role that DNMs play in disease risk, this negative result is good news for IVF and ICSI-TESE born children, if replicated in a larger cohort. STUDY FUNDING/COMPETING INTEREST(S): This research was funded by the Netherlands Organisation for Scientific Research (918-15-667) and by an Investigator Award in Science from the Wellcome Trust (209451). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Fertilização in vitro , Injeções de Esperma Intracitoplásmicas , Adulto , Criança , Feminino , Fertilização , Humanos , Masculino , Mutação , Projetos Piloto , Injeções de Esperma Intracitoplásmicas/métodos
2.
Nat Commun ; 13(1): 154, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013161

RESUMO

De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p-value = 1.00 × 10-5) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p-value = 5.01 × 10-4) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p-value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility.


Assuntos
Azoospermia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Mutação com Perda de Função , Mutação de Sentido Incorreto , Oligospermia/genética , Proteínas de Ligação a RNA/genética , Proteínas Supressoras de Tumor/genética , Adulto , Azoospermia/patologia , Estudos de Casos e Controles , Proteínas de Ciclo Celular/deficiência , Proteínas de Ligação a DNA/deficiência , Exoma , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Masculino , Oligospermia/patologia , Proteínas Supressoras de Tumor/deficiência , Sequenciamento do Exoma
3.
Hum Genet ; 140(1): 7-19, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32638125

RESUMO

Identifying the genes causing male infertility is important to increase our biological understanding as well as the diagnostic yield and clinical relevance of genetic testing in this disorder. While significant progress has been made in some areas, mainly in our knowledge of the genes underlying rare qualitative sperm defects, the same cannot be said for the genetics of quantitative sperm defects. Technological advances and approaches in genomics are critical for the process of disease gene identification. In this review we highlight the impact of various technological developments on male infertility gene discovery as well as functional validation, going from the past to the present and the future. In particular, we draw attention to the use of unbiased genomics approaches, the development of increasingly relevant functional assays and the importance of large-scale international collaboration to advance disease gene identification in male infertility.


Assuntos
Infertilidade Masculina/genética , Animais , Estudos de Associação Genética/métodos , Testes Genéticos/métodos , Genômica/métodos , Humanos , Masculino , Espermatozoides/anormalidades
4.
Hum Reprod ; 34(10): 1876-1890, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31593593

RESUMO

STUDY QUESTION: Do all regions of the paternal genome within the gamete display equivalent vulnerability to oxidative DNA damage? SUMMARY ANSWER: Oxidative DNA damage is not randomly distributed in mature human spermatozoa but is instead targeted, with particular chromosomes being especially vulnerable to oxidative stress. WHAT IS KNOWN ALREADY: Oxidative DNA damage is frequently encountered in the spermatozoa of male infertility patients. Such lesions can influence the incidence of de novo mutations in children, yet it remains to be established whether all regions of the sperm genome display equivalent susceptibility to attack by reactive oxygen species. STUDY DESIGN, SIZE, DURATION: Human spermatozoa obtained from normozoospermic males (n = 8) were split into equivalent samples and subjected to either hydrogen peroxide (H2O2) treatment or vehicle controls before extraction of oxidized DNA using a modified DNA immunoprecipitation (MoDIP) protocol. Specific regions of the genome susceptible to oxidative damage were identified by next-generation sequencing and validated in the spermatozoa of normozoospermic males (n = 18) and in patients undergoing infertility evaluation (n = 14). PARTICIPANTS/MATERIALS, SETTING, METHODS: Human spermatozoa were obtained from normozoospermic males and divided into two identical samples prior to being incubated with either H2O2 (5 mm, 1 h) to elicit oxidative stress or an equal volume of vehicle (untreated controls). Alternatively, spermatozoa were obtained from fertility patients assessed as having high basal levels of oxidative stress within their spermatozoa. All semen samples were subjected to MoDIP to selectively isolate oxidized DNA, prior to sequencing of the resultant DNA fragments using a next-generation whole-genomic sequencing platform. Bioinformatic analysis was then employed to identify genomic regions vulnerable to oxidative damage, several of which were selected for real-time quantitative PCR (qPCR) validation. MAIN RESULTS AND THE ROLE OF CHANCE: Approximately 9000 genomic regions, 150-1000 bp in size, were identified as highly vulnerable to oxidative damage in human spermatozoa. Specific chromosomes showed differential susceptibility to damage, with chromosome 15 being particularly sensitive to oxidative attack while the sex chromosomes were protected. Susceptible regions generally lay outside protamine- and histone-packaged domains. Furthermore, we confirmed that these susceptible genomic sites experienced a dramatic (2-15-fold) increase in their burden of oxidative DNA damage in patients undergoing infertility evaluation compared to normal healthy donors. LIMITATIONS, REASONS FOR CAUTION: The limited number of samples analysed in this study warrants external validation, as do the implications of our findings. Selection of male fertility patients was based on high basal levels of oxidative stress within their spermatozoa as opposed to specific sub-classes of male factor infertility. WIDER IMPLICATIONS OF THE FINDINGS: The identification of genomic regions susceptible to oxidation in the male germ line will be of value in focusing future analyses into the mutational load carried by children in response to paternal factors such as age, the treatment of male infertility using ART and paternal exposure to environmental toxicants. STUDY FUNDING/COMPETING INTEREST(S): Project support was provided by the University of Newcastle's (UoN) Priority Research Centre for Reproductive Science. M.J.X. was a recipient of a UoN International Postgraduate Research Scholarship. B.N. is the recipient of a National Health and Medical Research Council of Australia Senior Research Fellowship. Authors declare no conflict of interest.


Assuntos
Dano ao DNA , Predisposição Genética para Doença , Infertilidade Masculina/genética , Herança Paterna , Espermatozoides/patologia , Adulto , Cromossomos Humanos/genética , Fertilidade/genética , Humanos , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/patologia , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Adulto Jovem
5.
Downs Syndr Res Pract ; 6(3): 134-8, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11501217

RESUMO

We present preliminary results of a cross-sectional study which had the following objectives: 1--to develop percentile curves of weight, height and head circumference of Portuguese children with Trisomy 21 from 0 to 48 months of age; 2--a comparison of the growth of children with Trisomy 21 with a control population of their siblings, and 3--a comparison between the growth of Portuguese and American children with Trisomy 21 (based on the data of Cronk et al). We conclude that: 1--there is growth delay (weight, height, head circumference) in the Portuguese children with Trisomy 21, in all of the parameters evaluated and in all age groups; 2--Portuguese children with Trisomy 21 present values similar to those obtained by Cronk et al until 24 months of age; 3--from the age of 30 months onward Portuguese children with Trisomy 21 were heavier and taller than American children with Trisomy 21. This supports the usefulness of percentile curves specifically for Portuguese children with Trisomy 21.


Assuntos
Síndrome de Down/genética , Antropometria , Pré-Escolar , Estudos Transversais , Síndrome de Down/complicações , Feminino , Transtornos do Crescimento/epidemiologia , Transtornos do Crescimento/etiologia , Humanos , Lactente , Recém-Nascido , Masculino , Portugal/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA