Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38496512

RESUMO

The development of novel imaging platforms has improved our ability to collect and analyze large three-dimensional (3D) biological imaging datasets. Advances in computing have led to an ability to extract complex spatial information from these data, such as the composition, morphology, and interactions of multi-cellular structures, rare events, and integration of multi-modal features combining anatomical, molecular, and transcriptomic (among other) information. Yet, the accuracy of these quantitative results is intrinsically limited by the quality of the input images, which can contain missing or damaged regions, or can be of poor resolution due to mechanical, temporal, or financial constraints. In applications ranging from intact imaging (e.g. light-sheet microscopy and magnetic resonance imaging) to sectioning based platforms (e.g. serial histology and serial section transmission electron microscopy), the quality and resolution of imaging data has become paramount. Here, we address these challenges by leveraging frame interpolation for large image motion (FILM), a generative AI model originally developed for temporal interpolation, for spatial interpolation of a range of 3D image types. Comparative analysis demonstrates the superiority of FILM over traditional linear interpolation to produce functional synthetic images, due to its ability to better preserve biological information including microanatomical features and cell counts, as well as image quality, such as contrast, variance, and luminance. FILM repairs tissue damages in images and reduces stitching artifacts. We show that FILM can decrease imaging time by synthesizing skipped images. We demonstrate the versatility of our method with a wide range of imaging modalities (histology, tissue-clearing/light-sheet microscopy, magnetic resonance imaging, serial section transmission electron microscopy), species (human, mouse), healthy and diseased tissues (pancreas, lung, brain), staining techniques (IHC, H&E), and pixel resolutions (8 nm, 2 µm, 1mm). Overall, we demonstrate the potential of generative AI in improving the resolution, throughput, and quality of biological image datasets, enabling improved 3D imaging.

2.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961670

RESUMO

The immense scale and complexity of neuronal electron microscopy (EM) datasets pose significant challenges in data processing, validation, and interpretation, necessitating the development of efficient, automated, and scalable error-detection methodologies. This paper proposes a novel approach that employs mesh processing techniques to identify potential error locations near neuronal tips. Error detection at tips is a particularly important challenge since these errors usually indicate that many synapses are falsely split from their parent neuron, injuring the integrity of the connectomic reconstruction. Additionally, we draw implications and results from an implementation of this error detection in a semi-automated proofreading pipeline. Manual proofreading is a laborious, costly, and currently necessary method for identifying the errors in the machine learning based segmentation of neural tissue. This approach streamlines the process of proofreading by systematically highlighting areas likely to contain inaccuracies and guiding proofreaders towards potential continuations, accelerating the rate at which errors are corrected.

3.
bioRxiv ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546753

RESUMO

Advances in Electron Microscopy, image segmentation and computational infrastructure have given rise to large-scale and richly annotated connectomic datasets which are increasingly shared across communities. To enable collaboration, users need to be able to concurrently create new annotations and correct errors in the automated segmentation by proofreading. In large datasets, every proofreading edit relabels cell identities of millions of voxels and thousands of annotations like synapses. For analysis, users require immediate and reproducible access to this constantly changing and expanding data landscape. Here, we present the Connectome Annotation Versioning Engine (CAVE), a computational infrastructure for immediate and reproducible connectome analysis in up-to petascale datasets (~1mm3) while proofreading and annotating is ongoing. For segmentation, CAVE provides a distributed proofreading infrastructure for continuous versioning of large reconstructions. Annotations in CAVE are defined by locations such that they can be quickly assigned to the underlying segment which enables fast analysis queries of CAVE's data for arbitrary time points. CAVE supports schematized, extensible annotations, so that researchers can readily design novel annotation types. CAVE is already used for many connectomics datasets, including the largest datasets available to date.

4.
bioRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36993282

RESUMO

We are now in the era of millimeter-scale electron microscopy (EM) volumes collected at nanometer resolution (Shapson-Coe et al., 2021; Consortium et al., 2021). Dense reconstruction of cellular compartments in these EM volumes has been enabled by recent advances in Machine Learning (ML) (Lee et al., 2017; Wu et al., 2021; Lu et al., 2021; Macrina et al., 2021). Automated segmentation methods can now yield exceptionally accurate reconstructions of cells, but despite this accuracy, laborious post-hoc proofreading is still required to generate large connectomes free of merge and split errors. The elaborate 3-D meshes of neurons produced by these segmentations contain detailed morphological information, from the diameter, shape, and branching patterns of axons and dendrites, down to the fine-scale structure of dendritic spines. However, extracting information about these features can require substantial effort to piece together existing tools into custom workflows. Building on existing open-source software for mesh manipulation, here we present "NEURD", a software package that decomposes each meshed neuron into a compact and extensively-annotated graph representation. With these feature-rich graphs, we implement workflows for state of the art automated post-hoc proofreading of merge errors, cell classification, spine detection, axon-dendritic proximities, and other features that can enable many downstream analyses of neural morphology and connectivity. NEURD can make these new massive and complex datasets more accessible to neuroscience researchers focused on a variety of scientific questions.

5.
Sci Rep ; 13(1): 2236, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755135

RESUMO

As clinicians are faced with a deluge of clinical data, data science can play an important role in highlighting key features driving patient outcomes, aiding in the development of new clinical hypotheses. Insight derived from machine learning can serve as a clinical support tool by connecting care providers with reliable results from big data analysis that identify previously undetected clinical patterns. In this work, we show an example of collaboration between clinicians and data scientists during the COVID-19 pandemic, identifying sub-groups of COVID-19 patients with unanticipated outcomes or who are high-risk for severe disease or death. We apply a random forest classifier model to predict adverse patient outcomes early in the disease course, and we connect our classification results to unsupervised clustering of patient features that may underpin patient risk. The paradigm for using data science for hypothesis generation and clinical decision support, as well as our triaged classification approach and unsupervised clustering methods to determine patient cohorts, are applicable to driving rapid hypothesis generation and iteration in a variety of clinical challenges, including future public health crises.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , Aprendizado de Máquina , Pacientes , Big Data
6.
Front Neuroinform ; 16: 828787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242021

RESUMO

Technological advances in imaging and data acquisition are leading to the development of petabyte-scale neuroscience image datasets. These large-scale volumetric datasets pose unique challenges since analyses often span the entire volume, requiring a unified platform to access it. In this paper, we describe the Brain Observatory Storage Service and Database (BossDB), a cloud-based solution for storing and accessing petascale image datasets. BossDB provides support for data ingest, storage, visualization, and sharing through a RESTful Application Programming Interface (API). A key feature is the scalable indexing of spatial data and automatic and manual annotations to facilitate data discovery. Our project is open source and can be easily and cost effectively used for a variety of modalities and applications, and has effectively worked with datasets over a petabyte in size.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2413-2418, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891768

RESUMO

As neuroimagery datasets continue to grow in size, the complexity of data analyses can require a detailed understanding and implementation of systems computer science for storage, access, processing, and sharing. Currently, several general data standards (e.g., Zarr, HDF5, precomputed) and purpose-built ecosystems (e.g., BossDB, CloudVolume, DVID, and Knossos) exist. Each of these systems has advantages and limitations and is most appropriate for different use cases. Using datasets that don't fit into RAM in this heterogeneous environment is challenging, and significant barriers exist to leverage underlying research investments. In this manuscript, we outline our perspective for how to approach this challenge through the use of community provided, standardized interfaces that unify various computational backends and abstract computer science challenges from the scientist. We introduce desirable design patterns and share our reference implementation called intern.


Assuntos
Conjuntos de Dados como Assunto/normas , Neurociências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA