Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617092

RESUMO

Vehicular ad hoc networks (VANETs) are a fundamental component of intelligent transportation systems in smart cities. With the support of open and real-time data, these networks of inter-connected vehicles constitute an 'Internet of vehicles' with the potential to significantly enhance citizens' mobility and last-mile delivery in urban, peri-urban, and metropolitan areas. However, the proper coordination and logistics of VANETs raise a number of optimization challenges that need to be solved. After reviewing the state of the art on the concepts of VANET optimization and open data in smart cities, this paper discusses some of the most relevant optimization challenges in this area. Since most of the optimization problems are related to the need for real-time solutions or to the consideration of uncertainty and dynamic environments, the paper also discusses how some VANET challenges can be addressed with the use of agile optimization algorithms and the combination of metaheuristics with simulation and machine learning methods. The paper also offers a numerical analysis that measures the impact of using these optimization techniques in some related problems. Our numerical analysis, based on real data from Open Data Barcelona, demonstrates that the constructive heuristic outperforms the random scenario in the CDP combined with vehicular networks, resulting in maximizing the minimum distance between facilities while meeting capacity requirements with the fewest facilities.


Assuntos
Algoritmos , Heurística , Cidades , Simulação por Computador , Inteligência
2.
Int J Neural Syst ; 32(12): 2250049, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36129779

RESUMO

Researchers have shown the limitations of using the single-modal data stream for emotion classification. Multi-modal data streams are therefore deemed necessary to improve the accuracy and performance of online emotion classifiers. An online decision ensemble is a widely used approach to classify emotions in real-time using multi-modal data streams. There is a plethora of online ensemble approaches; these approaches use a fixed parameter ([Formula: see text]) to adjust the weights of each classifier (called penalty) in case of wrong classification and no reward for a good performing classifier. Also, the performance of the ensemble depends on the [Formula: see text], which is set using trial and error. This paper presents a new Reward-Penalty-based Weighted Ensemble (RPWE) for real-time multi-modal emotion classification using multi-modal physiological data streams. The proposed RPWE is thoroughly tested using two prevalent benchmark data sets, DEAP and AMIGOS. The first experiment confirms the impact of the base stream classifier with RPWE for emotion classification in real-time. The RPWE is compared with different popular and widely used online ensemble approaches using multi-modal data streams in the second experiment. The average balanced accuracy, F1-score results showed the usefulness and robustness of RPWE in emotion classification in real-time from the multi-modal data stream.


Assuntos
Emoções , Recompensa , Emoções/fisiologia
3.
Methods ; 204: 340-347, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35314343

RESUMO

Emotional and physical health are strongly connected and should be taken care of simultaneously to ensure completely healthy persons. A person's emotional health can be determined by detecting emotional states from various physiological measurements (EDA, RB, EEG, etc.). Affective Computing has become the field of interest, which uses software and hardware to detect emotional states. In the IoT era, wearable sensor-based real-time multi-modal emotion state classification has become one of the hottest topics. In such setting, a data stream is generated from wearable-sensor devices, data accessibility is restricted to those devices only and usually a high data generation rate should be processed to achieve real-time emotion state responses. Additionally, protecting the users' data privacy makes the processing of such data even more challenging. Traditional classifiers have limitations to achieve high accuracy of emotional state detection under demanding requirements of decentralized data and protecting users' privacy of sensitive information as such classifiers need to see all data. Here comes the federated learning, whose main idea is to create a global classifier without accessing the users' local data. Therefore, we have developed a federated learning framework for real-time emotion state classification using multi-modal physiological data streams from wearable sensors, called Fed-ReMECS. The main findings of our Fed-ReMECS framework are the development of an efficient and scalable real-time emotion classification system from distributed multimodal physiological data streams, where the global classifier is built without accessing (privacy protection) the users' data in an IoT environment. The experimental study is conducted using the popularly used multi-modal benchmark DEAP dataset for emotion classification. The results show the effectiveness of our developed approach in terms of accuracy, efficiency, scalability and users' data privacy protection.


Assuntos
Eletroencefalografia , Emoções , Eletroencefalografia/métodos , Emoções/fisiologia , Humanos
4.
Sensors (Basel) ; 21(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668757

RESUMO

In face-to-face and online learning, emotions and emotional intelligence have an influence and play an essential role. Learners' emotions are crucial for e-learning system because they promote or restrain the learning. Many researchers have investigated the impacts of emotions in enhancing and maximizing e-learning outcomes. Several machine learning and deep learning approaches have also been proposed to achieve this goal. All such approaches are suitable for an offline mode, where the data for emotion classification are stored and can be accessed infinitely. However, these offline mode approaches are inappropriate for real-time emotion classification when the data are coming in a continuous stream and data can be seen to the model at once only. We also need real-time responses according to the emotional state. For this, we propose a real-time emotion classification system (RECS)-based Logistic Regression (LR) trained in an online fashion using the Stochastic Gradient Descent (SGD) algorithm. The proposed RECS is capable of classifying emotions in real-time by training the model in an online fashion using an EEG signal stream. To validate the performance of RECS, we have used the DEAP data set, which is the most widely used benchmark data set for emotion classification. The results show that the proposed approach can effectively classify emotions in real-time from the EEG data stream, which achieved a better accuracy and F1-score than other offline and online approaches. The developed real-time emotion classification system is analyzed in an e-learning context scenario.


Assuntos
Instrução por Computador , Educação a Distância , Eletroencefalografia , Emoções , Algoritmos , Humanos , Aprendizado de Máquina
5.
Sensors (Basel) ; 20(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256006

RESUMO

In the Internet of Things (IoT) + Fog + Cloud architecture, with the unprecedented growth of IoT devices, one of the challenging issues that needs to be tackled is to allocate Fog service providers (FSPs) to IoT devices, especially in a game-theoretic environment. Here, the issue of allocation of FSPs to the IoT devices is sifted with game-theoretic idea so that utility maximizing agents may be benign. In this scenario, we have multiple IoT devices and multiple FSPs, and the IoT devices give preference ordering over the subset of FSPs. Given such a scenario, the goal is to allocate at most one FSP to each of the IoT devices. We propose mechanisms based on the theory of mechanism design without money to allocate FSPs to the IoT devices. The proposed mechanisms have been designed in a flexible manner to address the long and short duration access of the FSPs to the IoT devices. For analytical results, we have proved the economic robustness, and probabilistic analyses have been carried out for allocation of IoT devices to the FSPs. In simulation, mechanism efficiency is laid out under different scenarios with an implementation in Python.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA