Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926150

RESUMO

ConspectusLithium-sulfur batteries (LSBs), recognized for their high energy density and cost-effectiveness, offer significant potential for advancement in energy storage. However, their widespread deployment remains hindered by challenges such as sluggish reaction kinetics and the shuttle effect of lithium polysulfides (LiPSs). By the introduction of catalytic materials, the effective adsorption of LiPSs, smooth surface migration behavior, and significantly reduced conversion energy barriers are expected to be achieved, thereby sharpening electrochemical reaction kinetics and fundamentally addressing the aforementioned challenges. However, driven by practical application targets, the demand for higher loadings and reduced electrolyte parameters inevitably exacerbates the burden on catalytic materials during their service. Additionally, given that catalytic materials contribute negligible electrochemical capacity, their incorporation inevitably increases the mass of nonactive components for reducing the energy density of LSBs. A meticulous insight into the lithium-sulfur catalytic reaction reveals that the conversion of LiPSs is dominated by active sites on the surfaces of catalytic materials. These microregions provide the necessary electron and ion transport for the conversion reaction of LiPSs, with their efficacy and quantity directly impacting the conversion efficiency. In light of these considerations, the strategic optimization of active sites emerges as a paramount pathway toward promoting the performance of LSBs while concurrently mitigating unnecessary mass. Here, we outline three strategies developed by our group to optimize active sites of catalytic materials: (1) Augmenting active sites by customizing structural modulation and precise dimensional control to maximize exposure. Emphasis has been placed on the approaches for material synthesis and the essence of reactions for achieving this strategy. (2) Regulating the microenvironment of active sites by integrating the coordination refinement, long-range atomic interactions, metal-support interactions, and other electronic regulation strategies, thereby providing an elevation in the intrinsic catalytic performance. (3) Implementing a self-cleaning mechanism for active sites to counteract deactivation by designing a tandem adsorption-migration-transformation pathway of sulfur contained within the molecular domain. Throughout this process, the intrinsic mechanisms driving performance enhancement through active site optimization strategies have been prominently emphasized, which encompass aspects such as electronic structure, atomic composition, and molecular configuration and significantly expand the comprehension of Li-S catalytic chemistry. Subsequently, considerations demanding heightened attention in future processes of active site optimization for catalytic materials have been delineated, including the in situ evolution patterns and resistance to the poisoning of active sites. It is noteworthy that given the similarity between Li-S catalysis chemistry and traditional electrocatalytic processes, this Account elucidates the concept of active site optimization by drawing insights from representative works and our own works in the field of electrocatalysis, which is relatively rare in previous reviews of LSBs. The proposed insights contribute to uncovering the intrinsic mechanisms of Li-S catalysis chemistry and introducing innovative ideas into active site optimization, ultimately advancing energy density and stability in LSBs.

2.
Inorg Chem ; 63(19): 8853-8862, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38692832

RESUMO

Li-S batteries are hampered by problems with their cathodes and anodes simultaneously. The improvement of Li-S batteries needs to consider both the anode and cathode. Herein, a Bi2Se3@MXene composite is prepared for the first time by rapidly growing Bi2Se3 nanodots on two-dimensional (2D) MXene nanosheets at room temperature through simply adding high-reactive hydroxyethylthioselenide in Bi3+/MXene aqueous solution. Bi2Se3@MXene exhibits a 2D structure due to the template effect of 2D MXene. Bi2Se3@MXene can not only facilitate the conversion of lithium polysulfides (LiPSs) but also inhibit their shuttling in the S cathode due to its catalytic effect and adsorption force with LiPSs. Bi2Se3@MXene can also be used as an interfacial lithiophilic layer to inhibit Li dendrite growth in the Li metal anode. Theoretical calculations reveal that Bi2Se3 nanodots in Bi2Se3@MXene can effectively boost the adsorption ability with LiPSs, and the MXene in Bi2Se3@MXene can accelerate the electron transport. Under the bidirectional regulation of Bi2Se3@MXene in the Li metal anode and S cathode, the Li-S battery shows an enhanced electrochemical performance.

3.
Adv Mater ; 36(26): e2403131, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547509

RESUMO

Unordered vacancies engineered in host anode materials cannot well maintain the uniform Na+ adsorbed and possibly render the local structural stress intense, resulting in electrode peeling and battery failure. Here, the indium is first introduced into Cu2Se to achieve the formation of CuInSe2. Next, an ion extraction strategy is employed to fabricate Cu0.54In1.15Se2 enriched with ordered vacancies by spontaneous formation of defect pairs. Such ordered defects, compared with unordered ones, can serve as myriad sodium ion micropumps evenly distributing in crystalline host to homogenize the adsorbed Na+ and the generated volumetric stress during the electrochemistry. Furthermore, Cu0.54In1.15Se2 is indeed proved by the calculations to exhibit smaller volumetric variation than the counterpart with unordered vacancies. Thanks to the distinct ordered vacancy structure, the material exhibits a highly reversible capacity of 428 mAh g-1 at 1 C and a high-rate stability of 311.7 mAh g-1 at 10 C after 5000 cycles when employed as an anode material for Sodium-ion batteries (SIBs). This work presents the promotive effect of ordered vacancies on the electrochemistry of SIBs and demonstrates the superiority to unordered vacancies, which is expected to extend it to other metal-ion batteries, not limited to SIBs to achieve high capacity and cycling stability.

4.
Sci Bull (Beijing) ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38555262

RESUMO

The practical application of lithium-sulfur (Li-S) batteries is inhibited by the shuttle effect of lithium polysulfides (LiPSs) and slow polysulfide redox kinetics on the S cathode as well as the uncontrollable growth of dendrites on the Li metal anode. Therefore, both cathode and anode sides must be considered when modifying Li-S batteries. Herein, two-dimensional (2D) ultrathin CoSe2 nanobelts are in situ grown on 2D N-doped MXene nanosheets (CoSe2@N-MXene) via one-step solvothermal process for the first time. Owing to its unique 2D/2D structure, CoSe2@N-MXene can be processed to crumpled nanosheets by freeze-drying and flexible and freestanding films by vacuum filtration. These crumpled CoSe2@N-MXene nanosheets with abundant active sites and inner spaces can act as S hosts to accelerate polysulfide redox kinetics and suppress the shuttle effect of LiPSs owing to their strong adsorption ability and catalytic conversion effect with LiPSs. Meanwhile, the CoSe2@N-MXene film (CoSe2@NMF) can act as a current collector to promote uniform Li deposition because it contains lithiophilic CoSe2 and N sites. Under the systematic effect of CoSe2@N-MXene on S cathode and Li metal anode, the electrochemical and safety performance of Li-S batteries are improved. CoSe2@NMF also shows excellent storage performances in flexible energy storage devices.

5.
Angew Chem Int Ed Engl ; 63(19): e202402069, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38466145

RESUMO

The advanced aqueous zinc-ion batteries (AZIBs) are still challenging due to the harmful reactions including hydrogen evolution and corrosion. Here, a natural small molecule acid vitamin C (Vc) as an aqueous electrolyte additive has been selectively identified. The small molecule Vc can adjust the d band center of Zn substrate which fixes the active H+ so that the hydrogen evolution reaction (HER) is restrained. Simultaneously, it could also fine-tune the solvation structure of Zn ions due to the enhanced electrostatics and reduced Pauli repulsion verified by energy decomposition analysis (EDA). Hence, the cell retains an ultra-long cycle performance of over 1300 cycles and a superior Coulombic efficiency (CE) of 99.5 %. The prepared full cells display increased rate capability, cycle lifetime, and self-discharge suppression. Our results shed light on the mechanistic principle of electrolyte additives on the performance improvement of ZIBs, which is anticipated to render a new round of studies.

6.
Small ; : e2312187, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501874

RESUMO

Zn dendrite growth and side reactions restrict the practical use of Zn anode. Herein, the design of a novel 3D hierarchical structure is demonstrated with self-zincophilic dual-protection constructed by ZnO and Zn nanoparticles immobilized on carbon fibers (ZnO/Zn⊂CF) as a versatile host on the Zn surface. The unique 3D frameworks with abundant zinc nucleation storage sites can alleviate the structural stress during the plating/stripping process and overpower Zn dendrite growth by moderating Zn2+ flux. Moreover, given the dual protection design, it can reduce the contact area between active zinc and electrolyte, inhibiting hydrogen evolution reactions. Importantly, density functional theory calculations and experimental results confirm that the introduced O atoms in ZnO/Zn⊂CF enhance the interaction between Zn2+ and the host and reduce Zn nucleation overpotential. As expected, the ZnO/Zn⊂CF-Zn electrode exhibits stable Zn plating/stripping with low polarization for 4200 h at 0.2 mA cm-2 and 0.2 mAh cm-2 . Furthermore, the symmetrical cell displays a significantly long cycling life of over 1800 h, even at 30 mA cm-2 . The fabricated full cells also show impressive cycling performance when coupled with V2 O3 cathodes.

7.
Small ; 20(23): e2309422, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38200681

RESUMO

The notorious shuttle effect and sluggish conversion kinetics of intermediate polysulfides (Li2S4, Li2S6, Li2S8) are severely hindered the large-scale development of Lithium-sulfur (Li-S) batteries. Rectifying interface effect has been a solution to regulate the electron distribution of catalysts via interfacial charge exchange. Herein, a ZnTe-ZnO heterojunction encapsulated in nitrogen-doped hierarchical porous carbon (ZnTe-O@NC) derived from metal-organic framework is fabricated. Theoretical calculations and experiments prove that the built-in electric field constructed at ZnTe-ZnO heterojunction via the rectifying interface contact, thus promoting the charge transfer as well as enhancing adsorption and conversion kinetics toward polysulfides, thereby stimulating the catalytic activity of the ZnTe. Meanwhile, the nitrogen-doped hierarchical porous carbon acts as confinement substrate also enables fast electrons/ions transport, combining with ZnTe-ZnO heterojunction realize a synergistic confinement-adsorption-catalysis toward polysulfides. As a result, the Li-S batteries with S/ZnTe-O@NC electrodes exhibit an impressive rate capability (639.7 mAh g-1 at 3 C) and cycling performance (70% capacity retention at 1 C over 500 cycles). Even with a high sulfur loading, it still delivers a superior electrochemical performance. This work provides a novel perspective on designing highly catalytic materials to achieve synergistic confinement-adsorption-catalysis for high-performance Li-S batteries.

8.
Adv Mater ; 36(8): e2309324, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048638

RESUMO

Slow electrochemistry kinetics and dendrite growth are major obstacles for lithium-sulfur (Li-S) batteries. The investigations over the polymorph effect require more endeavors to further access the related catalyst design principles. Herein, the systematic evaluation of CoTe2 alloy with two polymorphs regarding sulfur reduction reaction (SRR) and lithium plating/stripping is reported. As disclosed by theoretical calculations and electrochemical measurements, the orthorhombic (o-) and hexagonal (h-) CoTe2 make a substantial difference. The reactivity origin of the CoTe2 polymorphs is explored. The higher position of d-band centers for the Co atoms on the o-CoTe2 leads to a higher displacement of the antibonding state; the lower antibonding state occupancy, the more effective the interaction with the sulfide moieties and lithium. Hence, o-CoTe2 annihilates h-CoTe2 and exhibits better catalysis and more uniform lithium deposition, consolidated by excellent performance of full cell made of o-CoTe2 . It keeps stable charging/discharging for 800 cycles at 0.5 C with only 0.055% capacity decay per cycle and even achieves an areal capacity of 6.5 mAh cm-2 at lean electrolyte and high sulfur loading of 6.4 mg cm-2 . This work establishes the mechanistic perspective about the catalysts in Li-S batteries and provides new insight into the unified solution.

9.
Angew Chem Int Ed Engl ; 62(49): e202314124, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37872117

RESUMO

Constructing atom-clusters (ACs) with in situ modulation of coordination environment and simultaneously hollowing carbon support are critical yet challenging for improving electrocatalytic efficiency of atomically dispersed catalysts (ADCs). Herein, a general diffusion-controlled strategy based on spatial confining and Kirkendall effect is proposed to construct metallic ACs in N,P,S triply-doped hollow carbon matrix (MACs /NPS-HC, M=Mn, Fe, Co, Ni, Cu). Thereinto, FeACs /NPS-HC with the best catalytic activity for oxygen reduction reaction (ORR) is thoroughly investigated. Unlike the benchmark sample of symmetrical N-surrounded iron single-atoms in N-doped carbon (FeSAs /N-C), FeACs /NPS-HC comprises bi-/tri-atomic Fe centers with engineered S/N coordination. Theoretical calculation reveals that proper Fe gathering and coordination modulation could mildly delocalize the electron distribution and optimize the free energy pathways of ORR. In addition, the triple doping and hollow structure of carbon matrix could further regulate the local environment and allow sufficient exposure of active sites, resulting in more enhanced ORR kinetics on FeACs /NPS-HC. The zinc-air battery assembled with FeACs /NPS-HC as cathodic catalyst exhibits all-round superiority to Pt/C and most Fe-based ADCs. This work provides an exemplary method for establishing atomic-cluster catalysts with engineered S-dominated coordination and hollowed carbon matrix, which paves a new avenue for the fabrication and optimization of advanced ADCs.

10.
Adv Mater ; 35(32): e2303780, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37165604

RESUMO

Lithium-sulfur (Li-S) battery is a promising energy storage system due to its cost effectiveness and high energy density. However, formation of Li dendrites from Li metal anode and shuttle effect of lithium polysulfides (LiPSs) from S cathode impede its practical application. Herein, ultrafine ZnS nanodots are uniformly grown on 2D MXene nanosheets by a low-temperature (60 °C) hydrothermal method for the first time. Distinctively, the ZnS nanodot-decorated MXene nanosheets (ZnS/MXene) can be easily filtered to be a flexible and freestanding film in several minutes. The ZnS/MXene film can be used as a current collector for Li-metal anode to promote uniform Li deposition due to the superior lithiophilicity of ZnS nanodots. ZnS/MXene powders obtained by freeze drying can be used as separator decorator to address the shuttle effect of LiPSs due to their excellent adsorbability. Theoretical calculation proves that the existence of ZnS nanodots on MXene can obviously improve the adsorption ability of ZnS/MXene with Li+ and LiPSs. Li-S full cells with composite Li-metal anode and modified separator exhibit remarkable rate and cycling performance. Other transition metal sulfides (CdS, CuS, etc.) can be also grown on 2D MXene nanosheets by the low-temperature hydrothermal strategy.

11.
Small ; 19(29): e2208281, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026655

RESUMO

The "shuttle effect" and slow conversion kinetics of lithium polysulfides (LiPSs) are stumbling block for high-energy-density lithium-sulfur batteries (LSBs), which can be effectively evaded by advanced catalytic materials. Transition metal borides possess binary LiPSs interactions sites, aggrandizing the density of chemical anchoring sites. Herein, a novel core-shelled heterostructure consisting of nickel boride nanoparticles on boron-doped graphene (Ni3 B/BG), is synthesized through a graphene spontaneously couple derived spatially confined strategy. The integration of Li2 S precipitation/dissociation experiments and density functional theory computations demonstrate that the favorable interfacial charge state between Ni3 B and BG provides smooth electron/charge transport channel, which promotes the charge transfer between Li2 S4 -Ni3 B/BG and Li2 S-Ni3 B/BG systems. Benefitting from these, the facilitated solid-liquid conversion kinetics of LiPSs and reduced energy barrier of Li2 S decomposition are achieved. Consequently, the LSBs employed the Ni3 B/BG modified PP separator deliver conspicuously improved electrochemical performances with excellent cycling stability (decay of 0.07% per cycle for 600 cycles at 2 C) and remarkable rate capability of 650 mAh g-1 at 10 C. This study provides a facile strategy for transition metal borides and reveals the effect of heterostructure on catalytic and adsorption activity for LiPSs, offering a new viewpoint to apply boride in LSBs.

12.
Chemistry ; 29(11): e202203031, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36345668

RESUMO

The practical application of lithium-sulfur (Li-S) batteries is greatly hindered by the shuttle effect of dissolved polysulfides in the sulfur cathode and the severe dendritic growth in the lithium anode. Adopting one type of effective host with dual-functions including both inhibiting polysulfide dissolution and regulating Li plating/stripping, is recently an emerging research highlight in Li-S battery. This review focuses on such dual-functional hosts and systematically summarizes the recent research progress and application scenarios. Firstly, this review briefly describes the stubborn issues in Li-S battery operations and the sophisticated counter measurements over the challenges by dual-functional behaviors. Then, the latest advances on dual-functional hosts for both cathode and anode in Li-S full cells are catalogued as species, including metal chalcogenides, metal carbides, metal nitrides, heterostuctures, and the possible mechanisms during the process. Besides, we also outlined the theoretical calculation tools for the dual-functional host based on the first principles. Finally, several sound perspectives are also rationally proposed for fundamental research and practical development as guidelines.

13.
Adv Mater ; 34(51): e2207689, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36259588

RESUMO

Toward the well-explored lithium-sulfur (Li-S) catalytic chemistry, the slow adsorption-migration-conversion kinetics of lithium polysulfides on catalytic materials and Li2 S deposition-induced passivation of active sites limit the rapid and complete conversion of sulfur. Conceptively, molecular architectures can provide atom-precise models to understand the underlying active sites responsible for selective adsorption and conversion of LiPSs and Li2 S2 /Li2 S species. Here, an octanuclear Zn(II) (Zn8 ) cluster is presented, which features a metallacalix[8]arene with double cavities up and down the Zn8 ring. The central Zn8 ring and the specific double cavities with organic ligands of different electronegativity and bonding environments render active sites with variable steric hindrance and interaction toward the sulfur-borne species. An intramolecular tandem transformation mechanism is realized exclusively by Zn8 cluster, which promotes the self-cleaning of active sites and continuous electrochemical reaction. Notably, the external azo groups and internal Zn/O sites of Zn8 cluster in sequence stimulate the adsorption and conversion of long chain Li2 Sx (x ≥ 4) and short chain Li2 S/Li2 S2 , contributing to remarkable rate performance and cycling stability. This work pioneers the application of metallacalix[n]arene clusters with atom-precise structure in Li-S batteries, and the proposed mechanism advances the molecule-level understanding of Li-S catalytic chemistry.

14.
Small ; 18(37): e2203947, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35980940

RESUMO

The improvement of lithium-sulfur batteries is still impeded by notorious shuttling effect and sluggish kinetics on the S cathode, and rampant Li dendrite formation on the Li anode makes it worse. Herein, a type of single-atom dispersed Mo on nitrogen-doped graphene (Mo/NG) with a distinctive Mo-N2 O2 -C coordination structure first serving as a multifunctional material is designed by a structure-oriented strategy to solve Li and S electrochemistry. Mo/NG with superior intrinsic properties endowed by the unique coordination configuration adsorbs soluble polysulfides and promotes bidirectional conversion of LiPSs at the cathode side. Meanwhile, the suitable binding strength of Mo/NG with lithium ions endows it with an attractive lithiophilic feature. Specifically, Mo/NG is able to work as the adaptor to redistribute lithium ions on the interface of separator and homogenize the lithium ion flux. Due to the suitable binding ability with Li+ , it does not interfere with the diffusion of lithium ions across and provides tunnels exclusive to lithium ions to generate fast and homogeneous flux. Ascribed to such unique multifunctionality, Li-S batteries assembled with Mo/NG exhibit excellent electrochemical performance including long cycling stability over 1000 cycles and high areal capacities under high sulfur mass loading.

15.
Nanomicro Lett ; 14(1): 163, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35962882

RESUMO

Transition metal nitrides have attracted considerable attention as great potential anode materials due to their excellent metallic conductivity and high theoretical specific capacity. However, their cycling performance is impeded by their instability caused by the reaction mechanism. Herein, we report the engineering and synthesis of a novel hybrid architecture composed of MoO2.0N0.5 atomic nanoclusters bonded in nanosheets of N-doped carbon hierarchical hollow microspheres (MoO2.0N0.5/NC) as an anode material for sodium-ion batteries. The facile self-templating strategy for the synthesis of MoO2.0N0.5/NC involves chemical polymerization and subsequent one-step calcination treatments. The design is beneficial to improve the electrochemical kinetics, buffer the volume variation of electrodes during cycling, and provide more interfacial active sites for sodium uptake. Due to these unique structural and compositional merits, these MoO2.0N0.5/NC exhibits excellent sodium storage performance in terms of superior rate capability and stable long cycle life. The work shows a feasible and effective way to design novel host candidates and solve the long-term cycling stability issues for sodium-ion batteries.

16.
Adv Mater ; 34(28): e2202673, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35514175

RESUMO

Sodium-ion batteries (SIBs) have emerged as an alternative technology because of their merits in abundance and cost. Realizing their real applications, however, remains a formidable challenge. One is that among the limitations of anode materials, the alloy-type candidates tolerate fast capacity fading during cycling. Here, a 3D framework superstructure assembled with carbon nanobelt arrays decorated with a metallic bismuth (Bi) nanospheres coated carbon layer by thermolysis of Bi-based metal-organic framework nanorods is synthesized as an anode material for SIBs. Due to the unique structural superiority, the anode design promotes excellent sodium-storage performance in terms of high capacity, excellent cycling stability, and ultrahigh rate capability up to 80 A g-1 with a capacity of 308.8 mAh g-1 . The unprecedented sodium-storage ability is not only attributed to the unique hybrid architecture, but also to the production of a homogeneous and thin solid electrolyte interface layer and the formation of uniform porous nanostructures during cycling in the ether-based electrolyte. Importantly, deeper understanding of the underlying cause of the performance improvement is illuminated, which is vital to provide the theoretical basis for application of SIBs.

17.
Small Methods ; 6(6): e2200306, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35478385

RESUMO

Siloxene as a new type of 2D material has wide potential applications due to its special structure. Especially, as anode for lithium-ion batteries, siloxene shows promising prospect due to its small volume change and low diffusion pathway. However, the unstable solid electrolyte interphase and low electronic conductivity lead to the low Coulombic efficiency, poor rate capability, and limited cycling performance. To settle the problems, a thin porous covalent organic framework (COF) coating layer is designed by in situ growth on micro-sized siloxene. With the inherent ionic conductive and electrolyte compatible advantages of COF, the engineered siloxene demonstrates superior electrochemical performance with 96% capacity retention at 8 A g-1 for 1500 cycles.

18.
Angew Chem Int Ed Engl ; 61(26): e202202200, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35417080

RESUMO

The catalytic activity of main-group metal is hard to promote because of the intrinsic lack of host d orbitals available to be combined. Herein, under the guidance of theoretical predictions, we find atom-dispersed antimony sites (Sb-N4 moieties) can be activated to achieve high oxygen reduction reaction (ORR) activity using a functional group regulation strategy. Correspondingly, we manage to synthesize a main-group Sb single-atom catalysts (SACs) that comprises Sb-N4 active moieties functionalized by epoxy groups in the second microenvironment and incorporated in N-doped graphene (Sb1 /NG(O)). The electron-rich epoxy group can adjust the electronic structure of Sb-N4 active moieties, thereby optimizing the adsorption of the intermediate. The Sb SACs are comparable to industrial Pt/C under alkaline conditions. This discovery provides new opportunities to manipulate and improve the catalytic activity of main-group-element electrocatalysts.

19.
Small ; 18(13): e2107819, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35132781

RESUMO

Amorphous MoS3 has been an attractive electrode material for sodium-ion batteries and lithium-sulfur batteries. However, the potassium storage capability of amorphous MoS3 remains unreported. Herein, the construction of hybrid hierarchical microspheres composed of amorphous MoS3 nanosheets dual-confined with TiO2 core, and nitrogen-doped carbon shell layer (denoted as TiO2 @A-MoS3 @NC) via a self-templating method, combined with a low-temperature sulfurization process as a new anode material for potassium-ion batteries (PIBs), is reported. Benefitting from the unique structural merits including unique 1D chain structure, disordered arrangement of atoms and a large number of defects of amorphous MoS3 , more active heterointerfacial sites, effectively mitigated volume change, good electrical contact, and easy K+ ion migration, the TiO2 @A-MoS3 @NC microspheres exhibit excellent potassium-storage performance with high specific capacity, superior rate capability, and cycling stability.

20.
ACS Appl Mater Interfaces ; 14(2): 2979-2988, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34995069

RESUMO

Organic electrode materials have shown potential for rechargeable batteries because they are environmentally friendly, earth-abundant sources, recyclable, high sustainable, designable, flexible, and lightweight. However, low electrical conductivity and dissolution in organic liquid electrolytes hinder their further development. Herein, MXene/organics heterostructures are designed to address the problems of organic electrodes via a scalable and simple electrostatic self-assembly strategy. Under the effect of the electrostatic interaction, organic cathode material, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), is tightly attached to MXene nanosheets. Owing to the high electronic conductivity and special two-dimensional (2D) structure of MXene nanosheets, the issues of PTCDA cathode are effectively relieved. When applied in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), the MXene@PTCDA heterostructure exhibits significantly enhanced rate capability and cycling performance than bare PTCDA. The heterostructures proposed here can be applied to other (K, Zn, Al, Mg, Ca, etc.) battery systems. In addition to energy storage and conversion, the heterostructures can be also extended to many fields such as catalysis, sensors, electronics, optics, membranes, semiconductors, biomedicines, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA