RESUMO
Moso bamboo (Phyllostachys edulis), typically a monopodial scattering bamboo, is famous for its rapid growth. The rhizome-root system of Moso bamboo plays a crucial role in its clonal growth and spatial distribution. However, few studies have focused on rhizome-root systems. Here we collected LBs, RTs, and RGFNSs, the most important parts of the rhizome-root system, to study the molecular basis of the rapid growth of Moso bamboo due to epigenetic changes, such as DNA modifications and small RNAs. The angle of the shoot apical meristem of LB gradually decreased with increasing distance from the mother plant, and the methylation levels of LB were much higher than those of RT and RGFNS. 24 nt small RNAs and mCHH exhibited similar distribution patterns in transposable elements, suggesting a potential association between these components. The miRNA abundance of LB gradually increased with increasing distance from the mother plant, and a negative correlation was observed between gene expression levels and mCG and mCHG levels in the gene body. This study paves the way for further exploring the effects of epigenetic factors on the physiology of Moso bamboo.
Assuntos
Metilação de DNA , MicroRNAs , Rizoma/genética , Poaceae/genética , Poaceae/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de PlantasRESUMO
DNA methylation (5mC) and N6-methyladenosine (m6A) are two important epigenetics regulators, which have a profound impact on plant growth development. Phyllostachys edulis (P. edulis) is one of the fastest spreading plants due to its well-developed root system. However, the association between 5mC and m6A has seldom been reported in P. edulis. In particular, the connection between m6A and several post-transcriptional regulators remains uncharacterized in P. edulis. Here, our morphological and electron microscope observations showed the phenotype of increased lateral root under RNA methylation inhibitor (DZnepA) and DNA methylation inhibitor (5-azaC) treatment. RNA epitranscriptome based on Nanopore direct RNA sequencing revealed that DZnepA treatment exhibits significantly decreased m6A level in the 3'-untranslated region (3'-UTR), which was accompanied by increased gene expression, full-length ratio, higher proximal poly(A) site usage and shorter poly(A) tail length. DNA methylation levels of CG and CHG were reduced in both coding sequencing and transposable element upon 5-azaC treatment. Cell wall synthesis was impaired under methylation inhibition. In particular, differentially expressed genes showed a high percentage of overlap between DZnepA and 5-azaC treatment, which suggested a potential correlation between two methylations. This study provides preliminary information for a better understanding of the link between m6A and 5mC in root development of moso bamboo.
Assuntos
Poaceae , RNA , Metilação , RNA/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Circular RNAs (circRNAs) are a recently discovered type of non-coding RNA derived from pre-mRNAs. R-loops consist of a DNA:RNA hybrid and the associated single-stranded DNA. In Arabidopsis thaliana, circRNA:DNA R-loops regulate alternative splicing (AS) of SEPALLATA3 (SEP3). However, the occurrence and functions of circRNAs and R-loops in Populus trichocarpa are largely unexplored. Here, we performed circRNA-enriched sequencing in the stem-differentiating xylem (SDX) of P. trichocarpa and identified 2,742 distinct circRNAs, including circ-CESA4, circ-IRX7, and circ-GUX1, which are generated from genes involved in cellulose, and hemicellulose biosynthesis, respectively. To investigate the roles of circRNAs in modulating alternative splicing (AS), we detected 7,836 AS events using PacBio Iso-Seq and identified 634 circRNAs that overlapped with 699 AS events. Furthermore, using DNA:RNA hybrid immunoprecipitation followed by sequencing (DRIP-seq), we identified 8,932 R-loop peaks that overlapped with 181 circRNAs and 672 AS events. Notably, several SDX-related circRNAs overlapped with R-loop peaks, pointing to their possible roles in modulating AS in SDX. Indeed, overexpressing circ-IRX7 increased the levels of R-loop structures and decreased the frequency of intron retention in linear IRX7 transcripts. This study provides a valuable R-loop atlas resource and uncovers the interplay between circRNAs and AS in SDX of P. trichocarpa.
Assuntos
Processamento Alternativo/fisiologia , Populus/metabolismo , RNA Circular/metabolismo , Processamento Alternativo/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Populus/genética , Estruturas R-Loop/genética , Estruturas R-Loop/fisiologia , RNA Circular/genética , Xilema/genética , Xilema/metabolismoRESUMO
There are no comprehensive methods to identify N6-methyladenosine (m6A) at single-base resolution for every single transcript, which is necessary for the estimation of m6A abundance. We develop a new pipeline called Nanom6A for the identification and quantification of m6A modification at single-base resolution using Nanopore direct RNA sequencing based on an XGBoost model. We validate our method using methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and m6A-sensitive RNA-endoribonuclease-facilitated sequencing (m6A-REF-seq), confirming high accuracy. Using this method, we provide a transcriptome-wide quantification of m6A modification in stem-differentiating xylem and reveal that different alternative polyadenylation (APA) usage shows a different ratio of m6A.
Assuntos
Adenosina/análogos & derivados , Adenosina/metabolismo , Sequenciamento por Nanoporos , Nanoporos , Populus/metabolismo , Análise de Sequência de RNA , Xilema/metabolismo , Adenosina/genética , Algoritmos , Sequência de Bases , Diferenciação Celular , Perfilação da Expressão Gênica , Imunoprecipitação , Poliadenilação , Populus/genética , Transcriptoma , Xilema/genéticaRESUMO
In mammals, DNA methylation is associated with aging. However, age-related DNA methylation changes during phase transitions largely remain unstudied in plants. Moso bamboo (Phyllostachys edulis) requires a very long time to transition from the vegetative to the floral phase. To comprehensively investigate the association of DNA methylation with aging, we present here single-base-resolution DNA methylation profiles using both high-throughput bisulfite sequencing and single-molecule nanopore-based DNA sequencing, covering the long period of vegetative growth and transition to flowering in moso bamboo. We discovered that CHH methylation gradually accumulates from vegetative to reproductive growth in a time-dependent fashion. Differentially methylated regions, correlating with chronological aging, occurred preferentially at both transcription start sites and transcription termination sites. Genes with CG methylation changes showed an enrichment of Gene Ontology (GO) categories in 'vegetative to reproductive phase transition of meristem'. Combining methylation data with mRNA sequencing revealed that DNA methylation in promoters, introns and exons may have different roles in regulating gene expression. Finally, circular RNA (circRNA) sequencing revealed that the flanking introns of circRNAs are hypermethylated and enriched in long terminal repeat (LTR) retrotransposons. Together, the observations in this study provide insights into the dynamic DNA methylation and circRNA landscapes, correlating with chronological age, which paves the way to study further the impact of epigenetic factors on flowering in moso bamboo.
Assuntos
Envelhecimento/genética , Metilação de DNA , Flores/crescimento & desenvolvimento , Poaceae/genética , RNA Circular/genética , RNA de Plantas/genética , Envelhecimento/fisiologia , Metilação de DNA/genética , Metilação de DNA/fisiologia , Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , RNA Circular/metabolismo , RNA Circular/fisiologia , RNA de Plantas/metabolismo , RNA de Plantas/fisiologia , Análise de Sequência de DNA/métodosRESUMO
N6 -methyladenosine (m6 A) is a prevalent modification in messenger RNAs and circular RNAs that play important roles in regulating various aspects of RNA metabolism. However, the occurrence of the m6 A modification in plant circular RNAs has not been reported. A widely used method to identify m6 A modifications relies on m6 A-specific antibodies followed by next-generation sequencing of precipitated RNAs (MeRIP-Seq). However, one limitation of MeRIP-Seq is that it does not provide the precise location of m6 A at single-nucleotide resolution. Although more recent sequencing techniques such as Nanopore-based direct RNA sequencing (DRS) can overcome such limitations, the technology does not allow sequencing of circular RNAs, as these molecules lack a poly(A) tail. Here, we developed a novel method to detect the precise location of m6 A modifications in circular RNAs using Nanopore DRS. We first enriched our samples for circular RNAs, which we then fragmented and sequenced on the Nanopore platform with a customized protocol. Using this method, we identified 470 unique circular RNAs from DRS reads based on the back-spliced junction region. Among exonic circular RNAs, about 10% contained m6 A sites, which mainly occurred around acceptor and donor splice sites. This study demonstrates the utility of our antibody-independent method in identifying total and methylated circular RNAs using Nanopore DRS. This method has the additional advantage of providing the exact location of m6 A sites at single-base resolution in circular RNAs or linear transcripts from non-coding RNA without poly(A) tails.
Assuntos
Poaceae/genética , RNA Circular/genética , RNA de Plantas/genética , Análise de Sequência de RNA/métodos , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
Circular RNAs, including circular exonic RNAs (circRNA), circular intronic RNAs (ciRNA) and exon-intron circRNAs (EIciRNAs), are a new type of noncoding RNAs. Growing shoots of moso bamboo (Phyllostachys edulis) represent an excellent model of fast growth and their circular RNAs have not been studied yet. To understand the potential regulation of circular RNAs, we systematically characterized circular RNAs from eight different developmental stages of rapidly growing shoots. Here, we identified 895 circular RNAs including a subset of mutually inclusive circRNA. These circular RNAs were generated from 759 corresponding parental coding genes involved in cellulose, hemicellulose and lignin biosynthetic process. Gene co-expression analysis revealed that hub genes, such as DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1), MAINTENANCE OF METHYLATION (MOM), dicer-like 3 (DCL3) and ARGONAUTE 1 (AGO1), were significantly enriched giving rise to circular RNAs. The expression level of these circular RNAs presented correlation with its linear counterpart according to transcriptome sequencing. Further protoplast transformation experiments indicated that overexpressing circ-bHLH93 generating from transcription factor decreased its linear transcript. Finally, the expression profiles suggested that circular RNAs may have interplay with miRNAs to regulate their cognate linear mRNAs, which was further supported by overexpressing miRNA156 decreasing the transcript of circ-TRF-1 and linear transcripts of TRF-1. Taken together, the overall profile of circular RNAs provided new insight into an unexplored category of long noncoding RNA regulation in moso bamboo.
Assuntos
Brotos de Planta/crescimento & desenvolvimento , Poaceae/genética , RNA de Plantas/genética , RNA/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Brotos de Planta/metabolismo , Poaceae/crescimento & desenvolvimento , RNA Circular , TranscriptomaRESUMO
MOTIVATION: MicroRNA (miRNA) and alternative splicing (AS)-mediated post-transcriptional regulation has been extensively studied in most eukaryotes. However, the interplay between AS and miRNAs has not been explored in plants. To our knowledge, the overall profile of miRNA target sites in circular RNAs (circRNA) generated by alternative back splicing has never been reported previously. To address the challenge, we identified miRNA target sites located in alternatively spliced regions of the linear and circular splice isoforms using the up-to-date single-molecule real-time (SMRT) isoform sequencing (Iso-Seq) and Illumina sequencing data in eleven plant species. RESULTS: In total, we identified 399 401 and 114 574 AS events from linear and circular RNAs, respectively. Among them, there were 64 781 and 41 146 miRNA target sites located in linear and circular AS region, respectively. In addition, we found 38 913 circRNAs to be overlapping with 45 648 AS events of its own parent isoforms, suggesting circRNA regulation of AS of linear RNAs by forming R-loop with the genomic locus. Here, we present a comprehensive database of miRNA targets in alternatively spliced linear and circRNAs (ASmiR) and a web server for deposition and identification of miRNA target sites located in the alternatively spliced region of linear and circular RNAs. This database is accompanied by an easy-to-use web query interface for meaningful downstream analysis. Plant research community can submit user-defined datasets to the web service to search AS regions harboring small RNA target sites. In conclusion, this study provides an unprecedented resource to understand regulatory relationships between miRNAs and AS in both gymnosperms and angiosperms. AVAILABILITY AND IMPLEMENTATION: The readily accessible database and web-based tools are available at http://forestry.fafu.edu.cn/bioinfor/db/ASmiR. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Processamento Alternativo , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs , RNA Circular , RNA de Plantas , Análise de Sequência de RNARESUMO
BACKGROUND: Moso bamboo (Phyllostachys edulis) is a well-known bamboo species of high economic value in the textile industry due to its rapid growth. Phytohormones, which are master regulators of growth and development, serve as important endogenous signals. However, the mechanisms through which phytohormones regulate growth in moso bamboo remain unknown to date. RESULTS: Here, we reported that exogenous gibberellins (GA) applications resulted in a significantly increased internode length and lignin condensation. Transcriptome sequencing revealed that photosynthesis-related genes were enriched in the GA-repressed gene class, which was consistent with the decrease in leaf chlorophyll concentrations and the lower rate of photosynthesis following GA treatment. Exogenous GA applications on seedlings are relatively easy to perform, thus we used 4-week-old whole seedlings of bamboo for GA- treatment followed by high throughput sequencing. In this study, we identified 932 cis-nature antisense transcripts (cis-NATs), and 22,196 alternative splicing (AS) events in total. Among them, 42 cis-nature antisense transcripts (cis-NATs) and 442 AS events were differentially expressed upon exposure to exogenous GA3, suggesting that post-transcriptional regulation might be also involved in the GA3 response. Targets of differential expression of cis-NATs included genes involved in hormone receptor, photosynthesis and cell wall biogenesis. For example, LAC4 and its corresponding cis-NATs were GA3-induced, and may be involved in the accumulation of lignin, thus affecting cell wall composition. CONCLUSIONS: This study provides novel insights illustrating how GA alters post-transcriptional regulation and will shed light on the underlying mechanism of growth modulated by GA in moso bamboo.