RESUMO
A set of nine unique tobacco extract samples was analyzed using a self-developed electronic nose (E-nose) system, a commercial E-nose, and gas chromatography-mass spectrometry (GC-MS). The evaluation employed principal component analysis, statistical quality control, and soft independent modeling of class analogies (SIMCA). These multifaceted statistical methods scrutinized the collected data. Subsequently, a quality control model was devised to assess the stability of the sample quality. The results showed that the custom E-nose system could successfully distinguish between tobacco extracts with similar odors. After further training and the development of a quality control model for accepted tobacco extracts, it was possible to identify samples with normal and abnormal quality. To further validate our E-nose and extend its use within the tobacco industry, we collected and accurately classified the flavors of different tobacco leaf positions, with a remarkable accuracy rate of 0.9744. This finding facilitates the practical application of our E-nose system for the efficient identification of tobacco leaf positions.
Assuntos
Nariz Eletrônico , Cromatografia Gasosa-Espectrometria de Massas , Nicotiana , Folhas de Planta , Nicotiana/química , Folhas de Planta/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Análise de Componente Principal , Controle de Qualidade , Aromatizantes/análiseRESUMO
Five kinds of exopolysaccharides (EPS) were obtained by fermentation of Scleroderma areolatum Ehrenb. with sucrose, glucose, maltose, lactose, and fructose as carbon sources. Antioxidant abilities of the obtained EPSs were evaluated by inhibiting AAPH, HO·, and glutathione (GS·) induced oxidation of DNA and quenching 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS· and galvinoxyl radicals. The effects of carbon sources on the antioxidant properties of EPSs could be examined. The results showed that five EPSs can effectively inhibit radicals induced oxidation of DNA, and the thiobarbituric acid reactive substances (TBARS) percentages were 44.7%-80.8%, 52.3%-77.5%, and 44.7%-73.3% in inhibiting AAPH, HO·, and GS· induced oxidation of DNA, respectively. All five EPSs could scavenge ABTS· and galvinoxyh, and exhibit superior activity in scavenging free radicals. Antioxidant abilities of EPS with fructose as carbon source were highest among five EPS.
Assuntos
Amidinas , Antioxidantes , Basidiomycota , Benzotiazóis , Carbono , Ácidos Sulfônicos , Antioxidantes/farmacologia , Antioxidantes/química , DNA/química , Frutose , Sequestradores de Radicais Livres/farmacologiaRESUMO
Ionic strength condition is a crucial parameter for food processing, but it remains unclear how ionic strength alters the structure and digestibility of binary complexes containing starch and protein/protein hydrolysates. Here, the binary complex with varied ionic strength (0-0.40 M) was built by native corn starch (NS) and soy protein isolate (SPI)/hydrolysates (SPIH) through NaCl. The inclusion of SPI and SPIH allowed a compact network structure, especially the SPIH with reduced molecule size, which enriched the resistant starch (RS) of NS-SPIH. Particularly, the higher ionic strength caused the larger nonperiodic structures and induced loosener network structures, largely increasing the possibility of amylase for starch digestion and resulting in a decreased RS content from 19.07 % to 15.52 %. In other words, the SPIH hindered starch digestion while increasing ionic strength had the opposite effect, which should be considered in staple food production.
Assuntos
Amido Resistente , Amido , Amido/química , Amido Resistente/farmacologia , Hidrolisados de Proteína/farmacologia , Amilases , Concentração Osmolar , DigestãoRESUMO
While brown rice (BR) has numerous nutritional properties, the consumption potential of which is seriously restricted since the poor cooking quality and undesirable flavor. Here, edible oils (pork lard and corn oil, 1-5 wt%) were incorporated during the cooking of BR following heat moisture treatment. Incorporating corn oil rather than lard significantly ameliorated the texture properties (e.g. hardness, cohesiveness, and chewiness) and sensory properties of cooked BR. Both lard- and corn oil-incorporated cooked BR showed obvious structural changes accompanied by the formation of amylose-lipid complexes during cooking. It was confirmed that the incorporation of lard and corn oil allowed a higher degree of short-range molecular order, more V-type starch crystallites, and elevated nano-structural arrangements. Additionally, a decreased hardness (from 559.04 g to 424.18 g and 385.91 g, respectively) and enriched resistant starch (RS) were also observed, the highest RS content (15.95 % and 16.32 %, respectively) was observed when 1 wt% of lard and corn oil were incorporated.
Assuntos
Oryza , Oryza/química , Óleo de Milho , Temperatura Alta , Culinária , Amido/químicaRESUMO
Flavonoids, which contain a benzo-γ-pyrone (C6-C3-C6) skeleton, have been reported to exhibit effective antioxidant ability. This study aimed to compare the antioxidant activities of 7,8-dihydroxyflavone (7,8-DHF) and 7-hydroxyflavone (7-HF) in H2 O2 , lipopolysaccharide (LPS), or tert-butyl hydroperoxide (t-BHP)-induced RAW264.7 cells, respectively. The antioxidant capacities of 7,8-DHF and 7-HF were firstly evaluated by 2,2-azinobis-3-ethyl-benzothiazoline-6-sulphonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Then, reactive oxygen species (ROS), super oxide dismutase (SOD), and malondialdehyde (MDA) productions in H2 O2 , LPS, or t-BHP-induced RAW264.7 cells were tested and compared, respectively. Finally, the antioxidant mechanisms of 7-HF and 7,8-DHF were initially investigated by western blot. Our results showed that 7,8-DHF possessed stronger free-radical scavenging capacity than 7-HF. Both 7,8-DHF and 7-HF suppressed MDA production and ROS accumulation, improved the activity of SOD in H2 O2 , LPS, or t-BHP-induced RAW264.7 cells, respectively. And 7,8-DHF exerted a better antioxidant effect than 7-HF, especially in t-BHP-induced oxidative stress. Mechanically, 7,8-DHF prevented the activation of poly ADP-ribosepolymerase and caspase-3, meanwhile markedly upregulated the expression of HO-1 protein in t-BHP-induced oxidative stress. These results suggested that 7,8-DHF might serve as a potential pharmaceutical drug against oxidative stress injury.
Assuntos
Antioxidantes , Flavonas , Inibidores de Poli(ADP-Ribose) Polimerases , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Caspase 3/metabolismo , Lipopolissacarídeos/toxicidade , Estresse Oxidativo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Animais , CamundongosRESUMO
Staple foods with starch and protein components are usually consumed after thermal processing. To date, how including protein hydrolysates (with varied hydrolysis degrees) tailors the structure and digestion features of starch-based matrix with thermal processing has not yet been sufficiently understood. Here, corn starch (CS), soy protein isolate (SPI), and soy protein isolate hydrolysates (SPIH) with different hydrolysis time (5-60 min) were used to prepare starch-based binary matrices. With the addition of SPI or SPIH during thermal processing, the resultant binary systems exhibited higher thermal stability (breakdown visibility was increased by 1.9-10.8 times), denser networks, and fewer short-range orders (R995/1022 was decreased by up to 15.3 %). These structural changes allowed an inhibited starch digestion within the binary system, especially with increased SPI or SPIH content. Compared with CS, the content of resistant starch (RS) for CS-SPI binary complex (10:3 w/w) increased from 9.89 % to 16.69 %. Compared to SPI, SPIH inclusion displayed a stronger inhibitory effect on starch digestion since the reduced molecule size of SPIH probably enhanced its interplays with starch or amylase. For instance, the 10:3 w/w starch-SPIH 60 binary matrix possessed the highest RS content (19.07 %).
Assuntos
Hidrolisados de Proteína , Amido , Amido/química , Hidrolisados de Proteína/química , Proteínas de Soja/química , Hidrólise , DigestãoRESUMO
Controlling the digestion features of starch-based food matrices following thermal processing plays vital roles in reducing risks of metabolic diseases such as obesity and type II diabetes. To date, it remains largely unclear how regulating the pH during thermal processing alters the microstructure and digestion features of starch-based matrix including protein hydrolysates. Considering this, corn starch (CS) and soybean protein isolate (SPI) (or its hydrolysates (SPIH)) were used to prepare thermally-processed CS-SPI and CS-SPIH binary matrices under different pH values (3 to 9), followed by inspection of changes in the structures and digestibility using combined methods. It was found that including SPI (especially SPIH) caused structural changes of those binary systems, such as reduced network sizes, increased V-crystals and reduced nanoscale structures, which could allow more resistant starch (RS). This phenomenon was especially true when including SPIH with regulated pH value. For instance, SPIH inclusion at pH 5 caused the highest RS content (about 20.30%), presumably linked to the reduced molecule size of SPIH with strengthened aggregation at pH 5. In contrast, the acidic (pH 3) and alkaline (pH 9) conditions allowed reduced short-range orders and tailored porous networks and thus less RS (ca. 17.46% at pH 3 and 16.74% at pH 9).
Assuntos
Diabetes Mellitus Tipo 2 , Amido , Humanos , Amido/química , Hidrolisados de Proteína/química , Amido Resistente , Proteínas de Soja/química , Concentração de Íons de HidrogênioRESUMO
Five psoralen derivatives were synthesized and the structures of them were characterized by 1 H-NMR, 13 C-NMR, and IR. The antioxidant properties of the compounds were tested by inhibiting the free radical-initiated DNA oxidation and scavenging the radical reaction. The results showed that the effective stoichiometric factors (n) of the compounds V and IV could reach 2.00 and 2.11 in the system of inhibiting the DNA oxidation reaction initiated by 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). In the inhibition of â OH-oxidation of the DNA system, compounds I~V showed antioxidant properties. The thiobarbituric acid absorbance (TBARS) percentages of compounds IV and V were 76.19 % and 78.84 %. Compounds I~V could also inhibit Cu2+ /GSH-oxidation of DNA, and all compounds exhibited good antioxidant properties except compound II (94.00 %). All the five compounds were able to trap diammonium 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) salt radical (ABTS+ â ), 2,2-diphenyl-1-picrylhydrazyl radical (DPPHâ ) and 2,6-di-tert-butyl-alpha-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-p-tolylox radical (galvinoxylâ ). The ability of compounds I~V to scavenge those free radicals can be measured by the k values. The k values ranged from 0.07 to 0.82 in scavenging ABTS+ â , galvinoxyl, and DPPH radicals, respectively.
RESUMO
A series of thioether pleuromutilin derivatives containing 1,2,4-triazole on the side chain of C14 were designed and synthesized. The in vitro antibacterial activities experiments of the synthesized derivatives showed that compounds 72 and 73 displayed superior in vitro antibacterial effect against MRSA minimal inhibitory concentration (MIC = 0.0625 µg/mL) than tiamulin (MIC = 0.5 µg/mL). The results of time-kill study and postantibiotic effect study indicated that compound 72 could inhibit the growth of MRSA quickly (-2.16 log10 CFU/mL) and showed certain postantibiotic effect (PAE) time (exposure to 2 × MIC and 4 × MIC for 2 h, the PAE was 1.30 and 1.35 h) against MRSA. Furthermore, the binding mode between compound 72 and 50S ribosome of MRSA was explored by molecular docking and five hydrogen bonds were formed between compound 72 and 50S ribosome.
Assuntos
Antibacterianos , Compostos Policíclicos , Simulação de Acoplamento Molecular , Antibacterianos/química , Compostos Policíclicos/farmacologia , Compostos Policíclicos/química , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , PleuromutilinasRESUMO
To improve the sensory quality of aged flue-cured tobacco (FCT), Bacillus subtilis subsp, H11 was inoculated on aged FCT leaves named Pingdingshan DCFB. The metagenome and thecharacteristic aroma substances of aged FCT with different fermentation times (0 h, 12 h, 24 h, and 36 h) were systematically analyzed. The results showed that the content of aroma components and sensory quality of aged FCT were significantly improved when the strain was treated at 35 °C with 25% moisture for 24 h. The inoculation of H11 had a strong influence on the microbial composition and metabolism of the aged FCT leaf surface. Five microorganisms Pantoea (35.04%, 20.12-56.95%), Enterobacter (22.16, 13.60-39.82%), Pseudomonas (12.12, 3.13-26.17%), Terribacillus (8.00%, 4.65-13.01%) and Bacillus (6.54%, 0.67-16.96%) accounted for the largest proportion during the process of fermentation. The content of most neutral flavor components such as ketones and aldehydes in FCT after fermentation was higher than that priorto fermentation. After 24 h fermentation, 3-furfural, 5-methylfurfural, dihydrokiwi lactone and megalotrienone increased by 71.42%, 49.19%, 21.09%, and 10.56%, respectively. Correlation analysis between groups showed that Pseudomonas was significantly correlated with (E, E)-2, 4-heptadienal (P < 0.05), Franconibacter was correlated with damascus ketone (P < 0.05), and Terribacillus was related to the production of ß-citral (P < 0.05). GH9 may be involved in the formation of damasone (P < 0.05), and 4-cyclopentene-1, 3-dione was significantly correlated with glycoside hydrolase family 5 (GH5) (P < 0.05). The correlation between 4-oxyisophorone and GH31, GH103, GH73, and GH3 was significant (P < 0.05). Microorganisms and GHs may play important roles in FCT fermentation.
Assuntos
Metagenoma , Microbiota , Nicotiana , Odorantes , Bacillus subtilis/genética , Folhas de PlantaRESUMO
Mitochondria-targetable fluorescent chemosensors, Rhodamine-B and rhodamine 6G bearing syringaldehyde based receptors were designed and synthesized for efficient chemosensing of Zinc(II) ions. The probes showed the very selective naked eye color change to pink from colorless upon addition of Zinc(II) ions, further these probes showing turn-on fluorescence enhancement with Zn(II) ions by opening of rhodamine spirolactam. The probes are very sensitive towards Zn(II) ions among other ions. These probes RBS and R6S will be applicable to detect zinc ions upto the low level concentration 0.18 and 0.19 nano molar respectively. The affinity of these sensors RBS and R6S for Zinc (II) ions was found to be in the range of 1.12 × 104 M-1 and 7.28 × 104 M-1 respectively. 1H-nmr titrations of the probes with Zn(II) ions clearly indicating the spiroring opening of the spirolactam. DFT calculations supporting that the perceived photophysical changes of the probes on appendage of the zinc ions. Probes RBS and R6S are useable for selective staining mitochondria. Both of the probes are applicable to reveal labile Zn(II) in live Hela and MCF-7 cells via fluorescence imaging. RBS and R6S are also finding application on quantification of Zinc(II) ions inside mitochondria via fluorescence imaging.
Assuntos
Corantes Fluorescentes , Zinco , Corantes Fluorescentes/química , Humanos , Íons/química , Mitocôndrias , Rodaminas/química , Espectrometria de Fluorescência , Zinco/químicaRESUMO
Due to the low price and good comprehensive properties, FRP composite material has become a new type of civil application material in recent years. In this paper, Araldite® 2012 adhesive was used to bond basalt-fiber-reinforced polymer (BFRP), and the durability of its bonded joints was investigated. Experiments were carried out at 80 °C/DI water (deionized water), 80 °C/3.5% NaCl solution (3.5% SS), and 80 °C/5.0% NaCl solution (5.0% SS) at 0- (unaged), 10-, 20-, and 30-day aging. The specimen and BFRP in the environment of 80 °C/DI water, 80 °C/3.5% SS, and 80 °C/5.0% SS found salt solution under the condition of all sample water absorption decreases, and the activity of salt solution chemistry was weaker compared with deionized water. The load-displacement curve of the joint failure was obtained through quasi-static tensile experiments, and it was found that the adhesive would undergo a post-curing reaction that had a positive impact on the stiffness of the joint in a high-temperature environment. At the same time, it was found that the joint failure strength decreased less in the salt solution environment, and deionized water was more destructive than the salt solution. Referring to the change in water absorption, it was found that the change in the mechanical properties of the joint was mainly related to the permeation effect of the polymer. The change in the Tg of adhesive was measured by differential scanning calorimetry (DSC). It was found that Tg would decrease after aging, and the change in Tg was mainly related to the mobility of the molecular chain. Thermogravimetric analysis (TGA) was used to analyze the thermal behavior of the epoxy resin and some organic matter, and the main weight loss stage was 340-450 °C, which was the complete degradation of epoxy resin and some organic matter. Macro visual and microscopic scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to analyze the failure section, and it can be concluded that the failure mode of joint tear failure transitioned to cohesion in the late-mixed interface failure, at the visible interface between the fiber and the resin matrix.
RESUMO
Novel series of pleuromutilin analogs containing substituted 1,2,3-triazole moieties were designed, synthesised and assessed for their in vitro antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA). Initially, the in vitro antibacterial activities of these derivatives against 4 strains of S. aureus (MRSA ATCC 43300, ATCC 29213, AD3, and 144) were tested by the broth dilution method. Most of the synthesised pleuromutilin analogs displayed potent activities. Among them, compounds 50, 62, and 64 (MIC = 0.5â¼1 µg/mL) showed the most effective antibacterial activity and their anti-MRSA activity were further studied by the time-killing kinetics approach. Binding mode investigations by surface plasmon resonance (SPR) with 50S ribosome revealed that the selected compounds all showed obvious affinity for 50S ribosome (KD = 2.32 × 10-8â¼5.10 × 10-5 M). Subsequently, the binding of compounds 50 and 64 to the 50S ribosome was further investigated by molecular modelling. Compound 50 had a superior docking mode with 50S ribosome, and the binding free energy of compound 50 was calculated to be -12.0 kcal/mol.
Assuntos
Antibacterianos/farmacologia , Diterpenos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Simulação de Acoplamento Molecular , Compostos Policíclicos/farmacologia , Ressonância de Plasmônio de Superfície , Antibacterianos/síntese química , Antibacterianos/química , Química Click , Diterpenos/síntese química , Diterpenos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Policíclicos/síntese química , Compostos Policíclicos/química , PleuromutilinasRESUMO
6,6'-Dibromided tert-butyloxycarbonyl isoindigo (Br-TBOCII) has intense fluorescence in the solid state via excitation with aggregation-induced emission (AIE), contrary to the classic heavy-atom effect. The unique AIE mechanism is attributed to the Br-Br bonding joint restricting intramolecular motion. Furthermore, the water-soluble nanoparticles Br-TBOCII/Pluronic® 127, possess robust photostability, low toxicity and good cell imaging performance.
Assuntos
Corantes Fluorescentes , Nanopartículas , Fluorescência , IndóisRESUMO
A novel highly selective and sensitive turn-on fluorescent chemosensor PCE to recognize Zn2+ has been developed. The sensor PCE displays a remarkable fluorescent enhancement at 456 nm (λex = 340 nm) with Zn2+ without the interference of other biologically important relevant metal ions in aqueous acetonitrile solution. Job's plot and mass spectral studies divulge such the interaction of PCE by Zn2+ was 1:1 binding stoichiometry. The association constant and detection limit of PCE to recognize Zn2+ was found to be 0.948 × 104 M-1 and 4.82 × 10-7 M respectively. The nature of turn-on fluorescence sensor was supported by TD-DFT calculations. And the synthesized probe PCE was able to image intracellular Zn2+ in living cells using confocal imaging techniques. PCE-Zn ensemble showed the remarkable fluorescence enhancement with ATP selectively among other biologically important phosphates. 31P NMR experiments suggesting that the triphosphates unit of ATP is intact with the PCEZn. PCE-Zn ensemble can be utilized for monitoring ATP in live cells.
Assuntos
Trifosfato de Adenosina/análise , Corantes Fluorescentes/química , Pirenos/química , Zinco/química , Trifosfato de Adenosina/química , Teoria da Densidade Funcional , Corantes Fluorescentes/análise , Células HeLa , Humanos , Íons/química , Limite de Detecção , Espectroscopia de Ressonância Magnética , Microscopia de Fluorescência , Teoria Quântica , Bases de Schiff/química , Zinco/metabolismoRESUMO
2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP) exists in many foods, and its effect on taste is controversial. The aim of this study was to clarify whether DDMP has bitter taste or not. For this purpose, DDMP was synthesized from maltol instead of from glucose for the first time. In contrast, DDMP derived from glucose was also prepared and further purified. Their structures were identified by NMR and MS, and considered to be the same substance. The sensory analysis showed that DDMP derived from maltol was tasteless. Further studies indicated that some impurities in Maillard reaction made DDMP derived from glucose taste bitter.
Assuntos
Pironas/química , Pironas/síntese química , Paladar , Glucose/química , Humanos , Espectroscopia de Ressonância Magnética , Reação de MaillardRESUMO
Cigar tobacco leaves (CTLs) contain abundant bacteria and fungi that are vital to leaf quality during fermentation. In this study, artificial fermentation was used for the fermentation of CTLs since it was more controllable and efficient than natural aging. The bacterial and fungal community structure and composition in unfermented and fermented CTLs were determined to understand the effects of microbes on the characteristics of CTLs during artificial fermentation. The relationship between the chemical contents and alterations in the microbial composition was evaluated, and the functions of bacteria and fungi in fermented CTLs were predicted to determine the possible metabolic pathways. After artificial fermentation, the bacterial and fungal community structure significantly changed in CTLs. The total nitrate and nicotine contents were most readily affected by the bacterial and fungal communities, respectively. FAPROTAX software predictions of the bacterial community revealed increases in functions related to compound transformation after fermentation. FUNGuild predictions of the fungal community revealed an increase in the content of saprotrophic fungi after fermentation. These data provide information regarding the artificial fermentation mechanism of CTLs and will inform safety and quality improvements.
Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Microbiota , Nicotiana/microbiologia , Folhas de Planta/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Qualidade de Produtos para o Consumidor , Fermentação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Humanos , Produtos do Tabaco/microbiologiaRESUMO
It is well known that 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP) is usually formed in the Maillard reaction and it contributes to the antioxidant properties of Maillard reaction intermediates. A series of hydroxyl group protected DDMP derivatives were synthesized to further understand the source of antioxidant activity. Antioxidant abilities of the DDMP derivatives were evaluated by scavenging the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTSË+), 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH), and galvinoxyl radical, respectively. It was found that the introduction of protecting groups to the free hydroxyl groups of DDMP decreases their reducing abilities. In particular, the hydroxyl group at the olefin position exhibited a remarkable impact on the antioxidant activity of DDMP, indicating that the unstable enol structure in the DDMP moiety is the key factor for its antioxidant activity.
RESUMO
A new pleuromutilin derivative, 22-(2-amino-phenylsulfanyl)-22-deoxypleuromutilin (amphenmulin), has been synthesized and proved excellent in vitro and in vivo efficacy than that of tiamulin against methicillin-resistant Staphylococcus aureus (MRSA), suggesting this compound may lead to a promising antibacterial agent to treat MRSA infections. In this study, the effectiveness and safety of amphenmulin were further investigated. Amphenmulin showed excellent antibacterial activity against MRSA (minimal inhibitory concentration = 0.0156~8 µg/mL) and performed time-dependent growth inhibition and a concentration-dependent postantibiotic effect (PAE). Acute oral toxicity test in mice showed that amphenmulin was a practical non-toxic drug and possessed high security as a new drug with the 50% lethal dose (LD50) above 5000 mg/kg. The pharmacokinetic properties of amphenmulin were then measured. After intravenous administration, the elimination half-life (T1/2), total body clearance (Clß), and area under curve to infinite time (AUC0â∞) were 1.92 ± 0.28 h, 0.82 ± 0.09 L/h/kg, and 12.23 ± 1.35 µg·h/mL, respectively. After intraperitoneal administration, the T1/2, Clß/F and AUC0â∞ were 2.64 ± 0.72 h, 4.08 ± 1.14 L/h/kg, and 2.52 ± 0.81 µg·h/mL, respectively, while for the oral route were 2.91 ± 0.81 h, 6.31 ± 2.26 L/h/kg, 1.67 ± 0.66 µg·h/mL, respectively. Furthermore, we evaluated the antimicrobial activity of amphenmulin in an experimental model of MRSA wound infection. Amphenmulin enhanced wound closure and promoted the healing of wound, which inhibited MRSA bacterial counts in the wound and decreased serum levels of the pro-inflammatory cytokines TNF-α, IL-6, and MCP-1.
Assuntos
Antibacterianos/farmacologia , Antibacterianos/farmacocinética , Diterpenos/farmacologia , Diterpenos/farmacocinética , Compostos Policíclicos/farmacologia , Compostos Policíclicos/farmacocinética , Animais , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Citocinas/metabolismo , Diterpenos/química , Vias de Administração de Medicamentos , Feminino , Cinética , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Compostos Policíclicos/química , Testes de Toxicidade , PleuromutilinasRESUMO
This paper describes the regioselective C-3 sulfenylation of N-sulfonyl protected 7-azaindoles with sulfonyl chlorides. In this transformation, dual roles of TBAI serving as both promoter and desulfonylation reagent have been demonstrated. The reaction proceeded smoothly under simple conditions to afford 3-thio-7-azaindoles in moderate to good yields with broad substrate scopes. This protocol refrains from using transition-metal catalysts, strong oxidants or bases, and shows its practical synthetic value in organic synthesis.