Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 221: 511-518, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30660907

RESUMO

In this study, the feasibility of a novel Ca-Ag3PO4 composite with visible light irradiation for the phenanthrene (PHE) degradation and algae inactivation in artificial seawater was firstly investigated. The experimental findings revealed that Ag3PO4 phase was sucessfully formed on the Ca-based material, and the presence of Ca-based material could effectively keep Ag3PO4 particles stable. An excellent performance on PHE degradation or algae inactivation was observed from Ca-Ag3PO4 composite under visible light irradiation. The degradation of PHE or inactivation of algae not only could be efficiently achieved in the single mode, but also could be successfully achieved in the coexisting mode. Above 96% of PHE and algae were simultaneously removed within 12 h in the Ca-Ag3PO4/visible light system. It was further observed that the degradation of PHE and/or inactivation of algae increased with the increase of Ca-Ag3PO4 dosage. HO was the primary radical responsible for PHE degradation, whereas HO and Ag+ released from Ca-Ag3PO4 mainly contributed to the algae inactivation. A possible mechanism involving the catalytic removal of PHE and algae by Ca-Ag3PO4 under visible light irradiation was proposed. This study provides helpful guide for the simultaneous removal of various pollutants in real seawater.


Assuntos
Luz , Fenantrenos/química , Fosfatos/farmacologia , Alga Marinha/efeitos da radiação , Compostos de Prata/farmacologia , Cálcio , Catálise/efeitos dos fármacos , Catálise/efeitos da radiação , Água do Mar/química , Poluentes da Água/química , Poluentes da Água/efeitos da radiação , Purificação da Água/métodos
2.
ChemSusChem ; 11(17): 2889-2897, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-29992768

RESUMO

This work demonstrates the use of a NiCu electrocatalyst prepared by hydrothermal method with different Ni/Cu mass ratios (70:30, 50:50 and 30:70) supported on carbon nanotubes (CNTs), which was studied with regards to its electrochemical behavior in the ammonia oxidation reaction and direct ammonia microfluidic fuel cell (DAMFC) performance. XRD and SEM-EDX showed the formation of NiCu alloy while TEM showed the particles size to be 15-20 nm. Cyclic voltammetry and chronoamperometry showed that NiCu had higher catalytic activity than pure Ni and pure Cu, and that the active species was a NiCu oxyhydroxide. In DAMFC tests, 50 wt % Ni50 Cu50 /CNTs was found to be the most suitable one since it showed a 43 % higher peak power density and 65 % higher maximum current density than Ni electrode. The improved performance was attributed to the NiCu oxyhydroxides formation, which improved the anodic catalytic activity by increasing amounts of active sites and the combined electronic effect of the Ni-Cu bimetallic catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA