Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38063739

RESUMO

Boron-doped diamond (BDD) thin film electrodes have great application potential in water treatment. However, the high electrode energy consumption due to high resistance directly limits the application range of existing BDD electrodes. In this paper, the BDD/graphene/BDD (DGD) sandwich structure electrode was prepared, which effectively improved the conductivity of the electrode. Meanwhile, the sandwich electrode can effectively avoid the degradation of electrode performance caused by the large amount of non-diamond carbon introduced by heavy doping, such as the reduction of the electrochemical window and the decrease of physical and chemical stability. The microstructure and composition of the film were characterized by scanning electron microscope (SEM), atomic force microscopy (AFM), Raman spectroscopy, and transmission electron microscopy (TEM). Then, the degradation performance of citric acid (CA), catechol, and tetracycline hydrochloride (TCH) by DGD electrodes was systematically studied by total organic carbon (TOC) and Energy consumption per unit TOC removal (ECTOC). Compared with the single BDD electrode, the new DGD electrode improves the mobility of the electrode and reduces the mass transfer resistance by 1/3, showing better water treatment performance. In the process of dealing with Citric acid, the step current of the DGD electrode was 1.35 times that of the BDD electrode, and the energy utilization ratio of the DGD electrode was 2.4 times that of the BDD electrode. The energy consumption per unit TOC removal (ECTOC) of the DGD electrode was lower than that of BDD, especially Catechol, which was reduced to 66.9% of BDD. The DGD sandwich electrode, as a new electrode material, has good electrochemical degradation performance and can be used for high-efficiency electrocatalytic degradation of organic pollutants.

2.
Water Res ; 229: 119503, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549188

RESUMO

Electrochemically producing hydrogen peroxide (H2O2) from oxygen reduction reaction (ORR) with natural air diffusion electrode (NADE) is an attractive way to supply H2O2 for decentralized water treatment. In this study, the stability of NADE during H2O2 electroproduction in varying water matrices were evaluated, including synthetic electrolyte solutions (0.05 M Na2SO4) with or without calcium ions (Ca2+, 200 mg/L) and/or humic acid (HA, 40 mg/L), as well as a selected municipal wastewater (92.7 mg/L Ca2+, 3.6 mg/L Mg2+, and 23.9 mg/L total organic carbon). The results show that NADEs maintained a good stability during H2O2 electroproduction in Na2SO4 solutions regardless of the presence of HA. However, Ca2+ (and Mg2+) could form significant amounts of mineral precipitates on the surface and in the internal pores of NADEs during H2O2 electroproduction. These mineral precipitates can negatively influence H2O2 production by impeding the oxygen, electron, and proton transfer processes involved in ORR to H2O2. Moreover, the mineral precipitates shifted the NADEs from hydrophobic to hydrophilic, which may promote H2O2 reduction to H2O at the NADEs. Consequently, the apparent current efficiencies of H2O2 production decreased substantially from initially ∼90% to 50%-70% as the NADEs were continuously used for 60 h in the Ca-containing solutions and selected wastewater. These results indicate that water constituents that are commonly present in real water matrices, especially Ca2+, can cause serious deterioration of NADE stability during H2O2 electroproduction. Therefore, proper strategies are needed to mitigate electrode fouling during H2O2 electroproduction with NADEs in practical water and wastewater treatment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio/química , Peróxidos , Águas Residuárias , Oxirredução , Oxigênio , Eletrodos , Purificação da Água/métodos
3.
Water Res ; 118: 26-38, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28412550

RESUMO

Previous studies indicate that effective generation of hydrogen peroxide (H2O2) from cathodic oxygen (O2) reduction is critical for the improved water treatment performance (e.g., enhanced pollutant degradation and reduced bromate formation) during the electro-peroxone (E-peroxone) process (a combined process of electrolysis and ozonation). However, undesired reactions (e.g., O3, H2O2, and H2O reductions) may occur in competition with O2 reduction at the cathode. To get a better understanding of how these side reactions would affect the process, this study investigated the cathodic reaction mechanisms during electrolysis with O2/O3 gas mixture sparging using various electrochemical techniques (e.g., linear sweep voltammetry and stepped-current chronopotentiometry). Results show that when a carbon brush cathode was used during electrolysis with O2/O3 sparging, H2O and H2O2 reductions were usually negligible cathodic reactions. However, O3 can be preferentially reduced at much more positive potentials (ca. 0.9 V vs. SCE) than O2 (ca. -0.1 V vs. SCE) at the carbon cathode. Therefore, cathodic O2 reduction was inhibited when the process was operated under current limited conditions for cathodic O3 reduction. The inhibition of O2 reduction prevented the desired E-peroxone process (cathodic O2 reduction to H2O2 and ensuing reaction of H2O2 with O3 to OH) from occurring. In contrast, when cathodic O3 reduction was limited by O3 mass transfer to the cathode, cathodic O2 reduction to H2O2 could occur, thus enabling the E-peroxone process to enhance pollutant degradation and mineralization. Many process and water parameters (applied current, ozone dose, and reactivity of water constituents with O3) can cause fundamental changes in the cathodic reaction mechanisms, thus profoundly influencing water treatment performance during the E-peroxone process. To exploit the benefits of H2O2 in water treatment, reaction conditions should be carefully controlled to promote cathodic O2 reduction during the E-peroxone process.


Assuntos
Oxigênio/química , Ozônio/química , Purificação da Água , Eletrólise , Peróxido de Hidrogênio , Oxirredução , Poluentes Químicos da Água
4.
Phys Chem Chem Phys ; 17(12): 7707-13, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25712410

RESUMO

Nitrogen (N)-doped carbon and its non-noble metal composite replacing platinum-based oxygen reduction reaction (ORR) electrocatalysts still have some fundamental problems that remain. Here the micron-sized commercial polyacrylonitrile-based carbon fiber (PAN-CF) electrode was modified using an electrochemical method, converting its inherent pyridinic-N into 2-pyridone (or 2-hydroxyl pyridine) functional group existing in three-dimensional active layers with remarkable ORR catalytic activity and stability. The carbon atom adjacent to the nitrogen and oxygen atoms is prone to act as an active site to efficiently catalyze a two-electron ORR process. However, after coordinating pyridone to the Cu(2+) ion, together with the electrochemical reaction, the chemical redox between Cu(+) and ORR intermediates synergistically tends towards a four-electron pathway in alkaline solution. In different medium, the complexation and dissociation can induce the charge transfer and reconstruction among proton, metal ion and pyridone functionalities, eventually leading to the changes of ORR performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA