Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 26(1): 94-104, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050819

RESUMO

Liquid crystal monomers (LCMs), a group of synthetic chemicals released from liquid crystal devices such as televisions and smartphones, have recently been recognized as emerging contaminants due to their widespread occurrence in the environment and potential negative impacts on human health. Airborne LCMs can undergo atmospheric oxidation reactions to form various transformation products. Despite the certainty of atmospheric transformation chemistry, the knowledge about the hazard properties of transformation products remains largely unknown. Here, we perform an in silico model-based evaluation of the persistence, bioaccumulation potential, mobility, and toxicity of two representative LCMs, namely, 1-ethyl-4-(4-(4-propylcyclohexyl)phenyl)benzene and 4''-ethyl-2'-fluoro-4-propyl-1,1':4',1''-terphenyl, and their transformation products. We found that, among the investigated transformation products, 38% have overall persistence greater than the minimum of 331 days among the persistent organic pollutants regulated by the Stockholm Convention, 62% meet the bioaccumulation threshold of 1000 L kg-1 used by the United States Environmental Protection Agency, 44% are classified "mobile" according to the criterion used by the German Environmental Agency, and 58% have the potential to induce unacceptable toxic effects in aquatic organisms. Furthermore, we identified several transformation products with increased persistence, bioaccumulation potential, and mobility compared to their parent compounds. These findings not only offer insights for prioritizing LCM transformation products for future risk assessment, but also underscore the significance of considering atmospheric transformation in the evaluation of environmental risks posed by emerging contaminants, including LCMs.


Assuntos
Cristais Líquidos , Poluentes Químicos da Água , Humanos , Estados Unidos , Poluentes Químicos da Água/análise , Oxirredução
2.
Food Sci Nutr ; 9(1): 313-330, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33473295

RESUMO

This study was aimed to enhance the extraction yield of propolis samples using ultrasound technology, analyze the volatile compounds, and compare the antioxidant and antimicrobial effect of propolis extracts of different areas. Four propolis samples were collected from different regions of China, namely: Linqing, Shandong Province (LSP); Yingchun, Heilongjiang Province (YHP); Changge, Henan Province (CHP); and Raohe, Heilongjiang Province (RHP). The ultrasound extracts of CHP and RHP showed a higher total phenolic content (TPC) of 201.78 ± 4.60 mgGAE/g and 166.071 ± 1.53 mgGAE/g, total flavonoid content (TFC) of 519.77 ± 29.90 and 341.227 ± 10.82 mg quercetin/g respectively, as well as high antioxidant and antibacterial activity. Conventional extraction showed 15%-20% lower yield for TPC ranging from 72.02 ± 1.99 to 155.95 ± 3.69 mg GAE/g, TFC ranges from 129.675 ± 6.82 to 412.83 ± 12.14 mg quercetin/g, with lower antibacterial activity. The antioxidant activity of propolis extracts was determined by assays of reducing power, DPPH*, FRAP*, TEAC*, hydroxyl radical scavenging activity and superoxide anion scavenging activity. Collectively, the antioxidant activities of extracts from CHP and RHP were higher than those of the other two extracts(YHP and LSP). All the extracts showed high antimicrobial activity on Staphylococcus aureus, Listeria monocytogenes, and Bacillus subtilis, but no effect on Escherichia coli. A total of 150 compounds in propolis were detected by GC/MS. Terpenes (RHP 34%, YHP 5%, LSP 18%, and CHP 12%) and alcohols (RHP 12%, YHP 13%, LSP 12%, and CHP 10%) showed the highest relative content among all other extracts.

3.
Sci Total Environ ; 648: 253-262, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30118938

RESUMO

HONO is an important precursor of OH radical and plays a key role in atmospheric chemistry, but its source and formation mechanism remain uncertain, especially during complex atmospheric pollution processes. In this study, HONO mixing ratios were measured by a custom-made instrument during a severe pollution event from 16 to 23 December 2016, at an urban area of Beijing. The measurement was divided into three periods: I (haze), II (severe haze) and III (clean), according to the levels of PM2.5. This pollution episode was characterized by high levels of NO (75 ±â€¯39 and 94 ±â€¯40 ppbV during periods I and II, respectively) and HONO (up to 10.7 ppbV). During the nighttime, the average heterogeneous conversion frequency during the two haze periods were estimated to be 0.0058 and 0.0146 h-1, and it was not the important way to form HONO. Vehicle emissions contributed 52% (±16)% and 40% (±18)% to ambient HONO at nighttime during periods I and II. The contribution of homogeneous reaction of NO with OH should be reconsidered under high-NOx conditions and could be noticeable to HONO sources during this pollution event. Furthermore, HONO was positively correlated with PM2.5 during periods I and II, suggesting a potential chemical link between HONO and haze particles.

4.
J Phys Chem A ; 122(36): 7218-7226, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30118231

RESUMO

The contribution of volatile organic acids to chloride depletion still remains unclear under ambient conditions in the coast and inland. In this work, the heterogeneous reaction of HCOOH on the NaCl surface at a series of relative humidities (RHs) was investigated using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The formate was found to be formed on NaCl surface under dry and wet conditions, accompanied by the corresponding chloride depletion. The adsorbed HCOOH and the formation of formate on NaCl surface decreased with increasing RH below 30% RH. The adsorbed HCOOH decreased, while the formation of formate increased with enhanced RH at 45-70% RH. The variation in the formation of formate with RH suggests that chloride depletion may undergo similar changes. Additionally, the mechanism and kinetics for uptake of HCOOH on NaCl surface at various RHs were discussed and analyzed. Our results highlight the role of heterogeneous chemistry of volatile organic acid in the chloride depletion of NaCl in the coast and inland.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA