Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 59(7): 5170-5181, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32196316

RESUMO

The origin of the self-activated luminescence in the apatite-type M5(PO4)3X (MPOX; M = Sr or Ba; X = Cl or Br) samples and the spectral assignment for cerium-doped Sr5(PO4)3Cl (SPOC) phosphors are determined from first-principles methods combined with hybrid density functional theory (DFT) calculations, using the standard PBE0 hybrid functional, with wave function-based embedded-cluster ab initio calculations (at the CASSCF/CASPT2/RASSI-SO level). Electronic structure calculations are performed in order to accurately derive the band gaps of the hosts, the locations of impurity states in the energy bands that are caused by native defects and doped Ce3+ ions, and the charge-compensation mechanisms of aliovalent doping. The calculations of defect formation energies under O-poor conditions demonstrate that the native defects are easily generated in the undoped MPOX samples prepared under reducing atmospheres, from which thermodynamic and optical transition energy levels, as well as the corresponding energies, are derived in order to interpret the luminescence mechanisms of the undoped MPOX as previously reported. Our calculations reveal that the self-activated luminescence is mainly attributed to the optical transitions of the excitons bound to the oxygen vacancies (VO), along with their transformation of the charge states 0 ↔ 1+. Furthermore, the eight excitation bands observed in the synchrotron radiation excitation spectra of SPOC: Ce3+, Na+ phosphors are successfully assigned according to the ab initio calculated energies and relative oscillator strengths of the 4f1 → 5d1-5 transitions for the Ce3+ ions at both the Sr(1) and Sr(2) sites in the host. It is hoped that the feasible first-principles approaches in this work are applied in order to explore the origins of the luminescence in undoped and lanthanide-doped phosphors, complementing the experiments from the perspective of chemical compositions and the microstructures of materials.

2.
Nanoscale ; 12(14): 7804-7813, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32219265

RESUMO

It is important to maintain the balance between therapeutic efficiency and cytotoxicity when using nanomaterials for biomedical applications. Here, we propose a new method (i.e., non-covalent coating of protected copolymers onto the nanoparticle surface) to enhance the active targeting of nanoparticles to the cancer cells by combining the dissipative particle dynamics simulation and in vitro experiments. When coating the protected copolymer onto the nanoparticle surface, the uptake efficiency could be greatly altered due to the competition between the copolymer-ligand interaction and the receptor-ligand interaction-the non-covalent coating is more efficient than the covalent coating. Furthermore, the effect of the physicochemical properties of the protected copolymer on the targeting ability of nanoparticles was also investigated. This study offers useful insight into the optimal design of nanocarriers in biomedicine.


Assuntos
Nanopartículas/química , Polímeros/química , Animais , Células CHO , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Humanos , Ligantes , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Dióxido de Silício/química
3.
Nanoscale ; 9(26): 8982-8989, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28447687

RESUMO

Dual ligand targeting to different types of over-expressed receptors on cell surfaces is a promising strategy in nanomedicine. Here, by using dissipative particle dynamics simulations, the effect of the surface distribution and physicochemical properties of dual ligands on the cellular uptake of nanoparticles is systematically studied. It is found that the spontaneous rearrangement of dual ligands (from random to patterned distribution) on the nanoparticle surface can enhance the cellular uptake of nanoparticles. While the short length of ligands may restrict the ligand rearrangement, nanoparticles coated with short dual ligands cannot be fully wrapped by cell membranes unless the dual ligands are initially separated on the nanoparticle surface. Besides, when there exists a length mismatch or non-specific interaction between the dual ligands, dual-ligand targeting cannot enhance the uptake efficiency, either. Further, we also provide the design guidelines for surface decoration, and find that the Janus nanoparticle can make the most of dual-ligand targeting. These results can help understand how to better use dual ligands to achieve efficient cellular uptake, which may provide significant insights into the optimal design of future nanomaterials in drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Ligantes , Nanopartículas/metabolismo , Transporte Biológico , Modelos Químicos , Nanomedicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA