Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Methods Mol Biol ; 2500: 55-65, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657587

RESUMO

Monoclonal antibodies (mAbs) are one of the most widely used types of protein therapeutics. Charge variants are important quality attributes for evaluating developability, activity, and safety for mAb therapeutics. Here, we report a novel online capillary isoelectric focusing-mass spectrometry (CIEF-MS) method for mAb charge variant analysis using an electrokinetically pumped sheath-flow nanospray ion source on a time-of-flight (TOF) MS with a pressure-assisted chemical mobilization. Key factors that enable online CIEF-MS include effective capillary electrophoresis-MS (CE-MS) interface with enhanced sensitivity, utilization of MS-friendly electrolytes, beneficial effects of glycerol that reduces non-CIEF electrophoretic mobility and limits band broadening, appropriate ampholyte type and concentration selection for balanced separation resolution and MS detection sensitivity, optimized sheath liquid composition to realize high-resolution CIEF separation and effective MS electrospray ionization, as well as judiciously selected CIEF running parameters. The fundamental premise of CIEF has been verified by the linear correlation between isoelectric point (pI) values and migration time using a mixture of pI markers. By achieving high separation resolutions that are similar as those obtained from imaged CIEF (iCIEF), this method successfully provides highly sensitive MS identification for intact mAb charge variants. Furthermore, a middle-up sample treatment workflow can be adopted to provide in-depth charge variant analysis at subunit level for mAbs with complex charge heterogeneity. The mAb subunit CIEF-MS reveals the source of charge variant with enhanced resolution on both CIEF separation and MS spectra. This novel CIEF-MS method is a valuable tool with distinct advantage for objective and accurate assessment of charge heterogeneity of protein therapeutics.


Assuntos
Anticorpos Monoclonais , Antineoplásicos Imunológicos , Anticorpos Monoclonais/química , Eletroforese Capilar/métodos , Focalização Isoelétrica/métodos , Ponto Isoelétrico , Espectrometria de Massas/métodos
2.
Technol Soc ; 64: 101510, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36033357

RESUMO

Health care users and patients are increasingly using online health communities to seek medical service, especially during the COVID-19 epidemic. The factors that determine the online trust between physicians and patients perplex the stakeholders for a long time. Based on the trust theory, this study explored the influence of physicians' personal quality and online reputation on patients' selection. A longitudinal panel data collection exercise, covering 11905 physicians on haodf. com, was conducted on May 20, 2018, May 22, 2019 and May 25, 2020. The random effect models are used to test our hypothesis. Results show that physicians' quality (competence, benevolence, and integrity) and online reputation (online reviews and online rating) can significantly affect patients' selection. Moreover, the physician's gender can enhance the influence of online reputation on patients' selection. As online healthcare community becomes an increasingly appealing channel for health, the frequency of the physician's quality information updating and the quality of online service are equally important to online physician-patient trust.

3.
Anal Chem ; 92(22): 15202-15211, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33156608

RESUMO

With an overarching goal of characterizing the structure of every protein within a cell, identifying its interacting partners, and quantifying the dynamics of the states in which it exists, key developments are still necessary to achieve comprehensive native proteomics by mass spectrometry (MS). In practice, much work remains to optimize reliable online separation methods that are compatible with native MS and improve tandem MS (MS/MS) approaches with respect to when and how energy is deposited into proteins of interest. Herein, we utilize native capillary zone electrophoresis coupled with MS to characterize the proteoforms in the Escherichia coli 70S ribosome. The capabilities of 193 nm ultraviolet photodissociation (UVPD) to yield informative backbone sequence ions are compared to those of higher-energy collisional dissociation (HCD). To further improve sequence coverage values, a multistage MS/MS approach is implemented involving front-end collisional activation to disassemble protein complexes into constituent subunits that are subsequently individually isolated and activated by HCD or UVPD. In total, 48 of the 55 known E. coli ribosomal proteins are identified as 84 unique proteoforms, including 22 protein-metal complexes and 10 protein-protein complexes. Additionally, mapping metal-bound holo fragment ions resulting from UVPD of protein-metal complexes offers insight into the metal-binding sites.


Assuntos
Eletroforese Capilar/métodos , Escherichia coli/citologia , Espectrometria de Massas/métodos , Proteômica , Proteínas Ribossômicas/química , Proteínas Ribossômicas/isolamento & purificação , Raios Ultravioleta
4.
Analyst ; 145(14): 4787-4794, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32555825

RESUMO

Histatin-5 (Hst-5) is a human salivary peptide with antibacterial and antifungal activities. Thorough characterization and reliable quantification of Hst-5 and its degradation products are essential for understanding the Hst-5 degradation pathway. Due to the highly basic and strong cationic nature of the Hst-5 peptide, the quantitative analysis of Hst-5 and its degradation forms by online mass spectrometry remains challenging. Here, we adopt a recently developed electrokinetically pumped sheath liquid capillary electrophoresis - mass spectrometry (CE-MS) coupling technology, and successfully apply it for the analysis of Hst-5 and its degradation products. Our CE-MS method is demonstrated to be robust and quantitative. This novel analytical platform is reproducible and free of sample carryover. The efficacy of this method is demonstrated with a kinetic study of Hst-5 degradation by Sap9, a secreted aspartic peptidase. Our work demonstrates the potential of online CE-MS as a powerful approach for characterizing highly basic peptides.


Assuntos
Eletroforese Capilar , Histatinas , Humanos , Espectrometria de Massas , Peptídeos
5.
J Proteomics ; 216: 103676, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32006679

RESUMO

Membranous nephropathy (MN) is one of the most common causes of primary glomerular diseases worldwide. The M-type phospholipase A2 receptor (PLA2R), an antigen expressed in more than 70% of cases of idiopathic membranous nephropathy (IMN), is a biomarker which is now used by physicians for clinical diagnosis. Despite the prevalence of PLA2R in the cases of MN, it is not always effective to use PLA2R for differentiating primary or secondary MNs. On the other hand, urinary albumin assay is one of the de facto tests for kidney function testing for several decades. In this work, urinary albumin species between primary and secondary MN patients are compared using a newly developed capillary isoelectric focusing - mass spectrometry (CIEF-MS) technology. The distinct patterns of cationic and acidic urinary albumin species, as revealed by this novel CIEF-MS technology, suggest potential applications of this differential analysis for subtyping of membranous nephropathy. Further investigation of these cationic human albumin species in urine may provide clues to the disease onset and development of MN, thus facilitating treatment. In addition, this novel workflow of using CIEF-MS for urinary protein analysis may be beneficial to the research, pathology, prognosis, and diagnosis of many other types of kidney diseases, such as chronic kidney disease, diabetic nephrology, etc.


Assuntos
Glomerulonefrite Membranosa , Albuminas , Autoanticorpos , Glomerulonefrite Membranosa/diagnóstico , Humanos , Focalização Isoelétrica , Glomérulos Renais , Espectrometria de Massas
6.
MAbs ; 11(4): 767-778, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30919719

RESUMO

Growth in the pharmaceutical industry has led to an increasing demand for rapid characterization of therapeutic monoclonal antibodies. The current methods for antibody sequence confirmation (e.g., N-terminal Edman sequencing and traditional peptide mapping methods) are not sufficient; thus, we developed a fast method for sequencing recombinant monoclonal antibodies using a novel digestion-on-emitter technology. Using this method, a monoclonal antibody can be denatured, reduced, digested, and sequenced in less than an hour. High throughput and satisfactory protein sequence coverage were achieved by using a non-specific protease from Aspergillus saitoi, protease XIII, to digest the denatured and reduced monoclonal antibody on an electrospray emitter, while electrospray high voltage was applied to the digestion mixture through the emitter. Tandem mass spectrometry data was acquired over the course of enzyme digestion, generating similar information compared to standard peptide mapping experiments in much less time. We demonstrated that this fast protein sequencing method provided sufficient sequence information for bovine serum albumin and two commercially available monoclonal antibodies, mouse IgG1 MOPC21 and humanized IgG1 NISTmAb. For two monoclonal antibodies, we obtained sequence coverage of 90.5-95.1% for the heavy chains and 98.6-99.1% for the light chains. We found that on-emitter digestion by protease XIII generated peptides of various lengths during the digestion process, which was critical for achieving sufficient sequence coverage. Moreover, we discovered that the enzyme-to-substrate ratio was an important parameter that affects protein sequence coverage. Due to its highly automatable and efficient design, our method offers a major advantage over N-terminal Edman sequencing and traditional peptide mapping methods in the identification of protein sequence, and is capable of meeting an ever-increasing demand for monoclonal antibody sequence confirmation in the biopharmaceutical industry.


Assuntos
Anticorpos Monoclonais/química , Ácido Aspártico Endopeptidases/química , Aspergillus/metabolismo , Imunoglobulina G/química , Análise de Sequência de Proteína/métodos , Animais , Humanos , Camundongos , Nanoestruturas/química , Mapeamento de Peptídeos , Proteólise , Espectrometria de Massas por Ionização por Electrospray
7.
Eur J Mass Spectrom (Chichester) ; 25(1): 157-163, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30773923

RESUMO

Capillary zone electrophoresis (CZE) paired with mass spectrometry (MS) is a powerful analytical technique for examining mixtures of ionic analytes such as glycosaminoglycans. This study examines the mechanics of the electrospray process for a sheath flow CZE-MS interface under reverse polarity negative ionization conditions. Liquid flow in a sheath flow nano-electrospray CZE-MS interface is driven by two mechanisms, electroosmotic flow and electrospray nebulization. The contribution of these two processes to the overall flow of solution to the electrospray tip is influenced by the surface coatings of the sheath flow emitter tip and by the solvent composition. We have investigated the application of this interface to the reverse polarity separation of glycosaminoglycans and find that the role of electroosmotic flow is far less than has been reported previously, and the electrospray process itself is the largest contributor to the flow of the sheath liquid.

8.
Anal Chem ; 91(1): 846-853, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30516363

RESUMO

Glycosaminoglycans (GAGs) are biologically and pharmacologically important linear, anionic polysaccharides containing various repeating disaccharides sequences. The analysis of these polysaccharides generally relies on their chemical or enzymatic breakdown to disaccharide units that are separated, by chromatography or electrophoresis, and detected, by UV, fluorescence, or mass spectrometry (MS). Isoelectric focusing (IEF) is an important analytical technique with high resolving power for the separation of analytes exhibiting differences in isoelectric points. One format of IEF, the capillary isoelectric focusing (cIEF), is an attractive approach in that it can be coupled with mass spectrometry (cIEF-MS) to provide online focusing and detection of complex mixtures. In the past three decades, numerous studies have applied cIEF-MS methods to the analysis of protein and peptide mixtures by positive-ion mode mass spectrometry. However, polysaccharide chemists largely rely on negative-ion mode mass spectrometry for the analysis of highly sulfated GAGs. The current study reports a negative-ion mode cIEF-MS method using an electrokinetically pumped sheath liquid nanospray capillary electrophoresis-mass spectrometry (CE-MS) coupling technology. The feasibility of this negative-ion cIEF-MS method and its potential applications are demonstrated using chondroitin sulfate and heparan sulfate oligosaccharides mixtures.


Assuntos
Dissacarídeos/análise , Focalização Isoelétrica/métodos , Espectrometria de Massas/métodos , Proteínas de Bactérias/química , Sequência de Carboidratos , Condroitina ABC Liase/química , Sulfatos de Condroitina/análise , Sulfatos de Condroitina/química , Dissacarídeos/química , Escherichia coli/enzimologia , Heparina Liase/química , Heparitina Sulfato/análise , Heparitina Sulfato/química , Ponto Isoelétrico , Pedobacter/enzimologia , Proteus vulgaris/enzimologia
9.
J Chromatogr A ; 1545: 75-83, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29501428

RESUMO

Reverse polarity capillary zone electrophoresis coupled to negative ion mode mass spectrometry (CZE-MS) is shown to be an effective and sensitive tool for the analysis of glycosaminoglycan mixtures. Covalent modification of the inner wall of the separation capillary with neutral or cationic reagents produces a stable and durable surface that provides reproducible separations. By combining CZE-MS with a cation-coated capillary and a sheath flow interface, a rapid and reliable method has been developed for the analysis of sulfated oligosaccharides from dp4 to dp12. Several different mixtures have been separated and detected by mass spectrometry. The mixtures were selected to test the capability of this approach to resolve subtle differences in structure, such as sulfation position and epimeric variation of the uronic acid. The system was applied to a complex mixture of heparin/heparan sulfate oligosaccharides varying in chain length from dp3 to dp12 and more than 80 molecular compositions were identified by accurate mass measurement.


Assuntos
Eletroforese Capilar/métodos , Heparina/análise , Heparitina Sulfato/análise , Espectrometria de Massas/métodos , Eletro-Osmose , Enoxaparina/análise , Glicosaminoglicanos/análise , Heparina/química , Concentração de Íons de Hidrogênio , Peso Molecular , Oligossacarídeos/química , Fatores de Tempo
10.
Rapid Commun Mass Spectrom ; 32(11): 882-888, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29575162

RESUMO

RATIONALE: N-linked glycan analysis of recombinant therapeutic proteins, such as monoclonal antibodies, Fc-fusion proteins, and antibody-drug conjugates, provides valuable information regarding protein therapeutics glycosylation profile. Both qualitative identification and quantitative analysis of N-linked glycans on recombinant therapeutic proteins are critical analytical tasks in the biopharma industry during the development of a biotherapeutic. METHODS: Currently, such analyses are mainly carried out using capillary electrophoresis/laser-induced fluorescence (CE/LIF), liquid chromatography/fluorescence (LC/FLR), and liquid chromatography/fluorescence/mass spectrometry (LC/FLR/MS) technologies. N-linked glycans are first released from glycoproteins by enzymatic digestion, then labeled with fluorescence dyes for subsequent CE or LC separation, and LIF or MS detection. Here we present an on-line CE/LIF/MS N-glycan analysis workflow that incorporates the fluorescent Teal™ dye and an electrokinetic pump-based nanospray sheath liquid capillary electrophoresis/mass spectrometry (CE/MS) ion source. RESULTS: Electrophoresis running buffer systems using ammonium acetate and ammonium hydroxide were developed for the negative ion mode CE/MS analysis of fluorescence-labeled N-linked glycans. Results show that on-line CE/LIF/MS analysis can be readily achieved using this versatile CE/MS ion source on common CE/MS instrument platforms. CONCLUSIONS: This on-line CE/LIF/MS method using Teal™ fluorescent dye and electrokinetic pump-based nanospray sheath liquid CE/MS coupling technology holds promise for on-line quantitation and identification of N-linked glycans on recombinant therapeutic proteins.


Assuntos
Eletroforese Capilar/métodos , Corantes Fluorescentes/química , Espectrometria de Massas/métodos , Polissacarídeos/análise , Hidróxido de Amônia/química , Soluções Tampão , Desenho de Equipamento , Fluorescência , Lasers , Espectrometria de Massas/instrumentação , Nanoestruturas , Sistemas On-Line , Polissacarídeos/química , Pirenos/química , Fluxo de Trabalho
11.
Anal Chem ; 90(3): 2246-2254, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29272582

RESUMO

We report a new online capillary isoelectric focusing-mass spectrometry (CIEF-MS) method for monoclonal antibody (mAb) charge variant analysis using an electrokinetically pumped sheath-flow nanospray ion source and a time-of-flight MS with pressure-assisted chemical mobilization. To develop a successful, reliable CIEF-MS method for mAb, we have selected and optimized many critical, interrelating reagents and parameters that include (1) MS-friendly anolyte and catholyte; (2) a glycerol enhanced sample mixture that reduced non-CIEF electrophoretic mobility and band broadening; (3) ampholyte selected for balancing resolution and MS sensitivity; (4) sheath liquid composition optimized for efficient focusing, mobilization, and electrospray ionization; (5) judiciously selected CIEF running parameters including injection amount, field strength, and applied pressure. The fundamental premise of CIEF was well maintained as verified by the linear correlation (R2 = 0.99) between pI values and migration time using a mixture of pI markers. In addition, the charge variant profiles of trastuzumab, bevacizumab, infliximab, and cetuximab, obtained using this CIEF-MS method, were corroborated by imaged CIEF-UV (iCIEF-UV) analyses. The relative standard deviations (RSD) of absolute migration time of pI markers were all less than 5% (n = 4). Triplicate analyses of bevacizumab showed RSD less than 1% for relative migration time to an internal standard and RSD of 7% for absolute MS peak area. Moreover, the antibody charge variants were characterized using the online intact MS data. To the best of our knowledge, this is the first time that direct online MS detection and characterization were achieved for mAb charge variants resolved by CIEF as indicated by a well-established linear pH gradient and correlated CIEF-UV charge variant profiles.


Assuntos
Anticorpos Monoclonais/análise , Anticorpos Monoclonais/classificação , Focalização Isoelétrica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Reprodutibilidade dos Testes
12.
Anal Bioanal Chem ; 409(2): 411-420, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27325464

RESUMO

Most hyphenated analytical approaches that rely on liquid chromatography-MS require relatively long separation times, produce incomplete resolution of oligosaccharide mixtures, use eluents that are incompatible with electrospray ionization, or require oligosaccharide derivatization. Here we demonstrate the analysis of heparin oligosaccharides, including disaccharides, ultralow molecular weight heparin, and a low molecular weight heparin, using a novel electrokinetic pump-based CE-MS coupling eletrospray ion source. Reverse polarity CE separation and negative-mode electrospray ionization were optimized using a volatile methanolic ammonium acetate electrolyte and sheath fluid. The online CE hyphenated negative-ion electrospray ionization MS on an LTQ Orbitrap mass spectrometer was useful in disaccharide compositional analysis and bottom-up and top-down analysis of low molecular weight heparin. The application of this CE-MS method to ultralow molecular heparin suggests that a charge state distribution and the low level of sulfate group loss that is achieved make this method useful for online tandem MS analysis of heparins. Graphical abstract Most hyphenated analytical approaches that rely on liquid chromatography-MS require relatively long separation times, produce incomplete resolution of oligosaccharide mixtures, use eluents that are incompatible with electrospray ionization, or require oligosaccharide derivatization. Here we demonstrate the analysis of heparin oligosaccharides, including disaccharides, ultralow molecular weight heparin, and a low molecular weight heparin, using a novel electrokinetic pump-based CE-MS coupling eletrospray ion source. Reverse polarity CE separation and negative-mode electrospray ionization were optimized using a volatile methanolic ammonium acetate electrolyte and sheath fluid. The online CE hyphenated negative-ion electrospray ionization MS on an LTQ Orbitrap mass spectrometer was useful in disaccharide compositional analysis and bottom-up and top-down analysis of low molecular weight heparin. The application of this CE-MS method to ultralow molecular heparin suggests that a charge state distribution and the low level of sulfate group loss that is achieved make this method useful for online tandem MS analysis of heparins.


Assuntos
Técnicas de Química Analítica/métodos , Eletroforese Capilar , Heparina/química , Oligossacarídeos/química , Espectrometria de Massas por Ionização por Electrospray , Técnicas de Química Analítica/instrumentação , Heparina de Baixo Peso Molecular/química
13.
Anal Chem ; 88(3): 1937-43, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26714061

RESUMO

Heparins, highly sulfated, linear polysaccharides also known as glycosaminoglycans, are among the most challenging biopolymers to analyze. Hyphenated techniques in conjunction with mass spectrometry (MS) offer rapid analysis of complex glycosaminoglycan mixtures, providing detailed structural and quantitative data. Previous analytical approaches have often relied on liquid chromatography (LC)-MS, and some have limitations including long separation times, low resolution of oligosaccharide mixtures, incompatibility of eluents, and often require oligosaccharide derivatization. This study examines the analysis of glycosaminoglycan oligosaccharides using a novel electrokinetic pump-based capillary electrophoresis (CE)-MS interface. CE separation and electrospray were optimized using a volatile ammonium bicarbonate electrolyte and a methanol-formic acid sheath fluid. The online analyses of highly sulfated heparin oligosaccharides, ranging from disaccharides to low molecular weight heparins, were performed within a 10 min time frame, offering an opportunity for higher-throughput analysis. Disaccharide compositional analysis as well as top-down analysis of low molecular weight heparin was demonstrated. Using normal polarity CE separation and positive-ion electrospray ionization MS, excellent run-to-run reproducibility (relative standard deviation of 3.6-5.1% for peak area and 0.2-0.4% for peak migration time) and sensitivity (limit of quantification of 2.0-5.9 ng/mL and limit of detection of 0.6-1.8 ng/mL) could be achieved.


Assuntos
Heparina de Baixo Peso Molecular/análise , Heparina/análise , Oligossacarídeos/análise , Eletroforese Capilar , Heparina/química , Heparina de Baixo Peso Molecular/química , Espectrometria de Massas , Peso Molecular , Oligossacarídeos/química
14.
Rapid Commun Mass Spectrom ; 29(7): 659-66, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26212284

RESUMO

RATIONALE: Paired Lys-N and Lys-C proteases produce peptides of identical mass and similar retention time, but different tandem mass spectra. Data from these parallel experiments provide constraints that are applied before data analysis. With this approach, we can find matched spectra before analysis, distinguish ion type, and determine residue level confidence. METHODS: Aliquots are digested separately by Lys-N and Lys-C peptidases, and analyzed by reversed-phase nano-flow liquid chromatography, collision-induced dissociation, and 14.5 T Fourier transform ion cyclotron resonance mass spectrometry. Matched pairs of fragmentation spectra with equal precursor mass and similar retention times from each digestion are compared, leveraging single-residue transposed information with independent interferences to confidently identify fragment ion type, residues, and peptides. The paired spectra are solved together as a single de novo sequencing problem. RESULTS: Two pairs of spectra of a de novo sequenced 18-mer are presented. In one example, the 18-mer has coverage of all residues except the N- and C- terminal lysines and their adjacent residues. The confidence level is high due to six pairs of transposed ions. In the other example, the coverage is incomplete. Nonetheless, nine pairs of transposed ions facilitate identification of two trimer sequence tags with high confidence, one with medium confidence, and additional sequence information with residue-by-residue confidence, thus demonstrating the value of residue-by-residue confidence. CONCLUSIONS: Sequence identity and variability, such as post-translational modifications (PTMs), are essential to understanding biological function and disease. The present method facilitates discovery of new peptides with multiple levels of confidence, promises potential characterization of PTMs, and validates peptides from databases. Independent validation may be of interest for a number of applications.


Assuntos
Fragmentos de Peptídeos/análise , Análise de Sequência de Proteína/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Bovinos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptídeo Hidrolases , Soroalbumina Bovina
15.
Proc Natl Acad Sci U S A ; 110(41): 16562-7, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24023061

RESUMO

Deposition of insoluble protein aggregates is a hallmark of neurodegenerative diseases. The universal presence of ß-amyloid and tau in Alzheimer's disease (AD) has facilitated advancement of the amyloid cascade and tau hypotheses that have dominated AD pathogenesis research and therapeutic development. However, the underlying etiology of the disease remains to be fully elucidated. Here we report a comprehensive study of the human brain-insoluble proteome in AD by mass spectrometry. We identify 4,216 proteins, among which 36 proteins accumulate in the disease, including U1-70K and other U1 small nuclear ribonucleoprotein (U1 snRNP) spliceosome components. Similar accumulations in mild cognitive impairment cases indicate that spliceosome changes occur in early stages of AD. Multiple U1 snRNP subunits form cytoplasmic tangle-like structures in AD but not in other examined neurodegenerative disorders, including Parkinson disease and frontotemporal lobar degeneration. Comparison of RNA from AD and control brains reveals dysregulated RNA processing with accumulation of unspliced RNA species in AD, including myc box-dependent-interacting protein 1, clusterin, and presenilin-1. U1-70K knockdown or antisense oligonucleotide inhibition of U1 snRNP increases the protein level of amyloid precursor protein. Thus, our results demonstrate unique U1 snRNP pathology and implicate abnormal RNA splicing in AD pathogenesis.


Assuntos
Processamento Alternativo/fisiologia , Doença de Alzheimer/fisiopatologia , Encéfalo/metabolismo , Proteoma/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Spliceossomos/metabolismo , Processamento Alternativo/genética , Western Blotting , Cromatografia Líquida , Imunofluorescência , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Proteoma/genética , Proteômica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem
16.
Proteomics Clin Appl ; 6(3-4): 201-11, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22532456

RESUMO

PURPOSE: The present study is a discovery mode proteomics analysis of the membrane-enriched fraction of postmortem brain tissue from Alzheimer's disease (AD) and control cases. This study aims to validate a method to identify new proteins that could be involved in the pathogenesis of AD and potentially serve as disease biomarkers. EXPERIMENTAL DESIGN: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze the membrane-enriched fraction of human postmortem brain tissue from five AD and five control cases of similar age. Biochemical validation of specific targets was performed by immunoblotting. RESULTS: One thousand seven hundred and nine proteins were identified from the membrane-enriched fraction of frontal cortex. Label-free quantification by spectral counting and G-test analysis identified 13 proteins that were significantly changed in disease. In addition to Tau (MAPT), two additional proteins found to be enriched in AD, ubiquitin carboxy-terminal hydrolase 1 (UCHL1), and syntaxin-binding protein 1 (Munc-18), were validated through immunoblotting. DISCUSSION AND CLINICAL RELEVANCE: Proteomic analysis of the membrane-enriched fraction of postmortem brain tissue identifies proteins biochemically altered in AD. Further analysis of this subproteome may help elucidate mechanisms behind AD pathogenesis and provide new sources of biomarkers.


Assuntos
Doença de Alzheimer/patologia , Cromatografia Líquida/métodos , Lobo Frontal/patologia , Proteoma/análise , Idoso , Doença de Alzheimer/diagnóstico , Autopsia , Biomarcadores/análise , Química Encefálica , Estudos de Casos e Controles , Membrana Celular/metabolismo , Feminino , Lobo Frontal/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Munc18/metabolismo , Proteômica/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Ubiquitina Tiolesterase/metabolismo , Proteínas tau/metabolismo
17.
J Proteome Res ; 11(5): 2721-38, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22416763

RESUMO

A hallmark of neurodegeneration is the aggregation of disease related proteins that are resistant to detergent extraction. In the major pathological subtype of frontotemporal lobar degeneration (FTLD), modified TAR-DNA binding protein 43 (TDP-43), including phosphorylated, ubiquitinated, and proteolytically cleaved forms, is enriched in detergent-insoluble fractions from post-mortem brain tissue. Additional proteins that accumulate in the detergent-insoluble FTLD brain proteome remain largely unknown. In this study, we used proteins from stable isotope-labeled (SILAC) human embryonic kidney 293 cells (HEK293) as internal standards for peptide quantitation across control and FTLD insoluble brain proteomes. Proteins were identified and quantified by liquid-chromatography coupled with tandem mass spectrometry (LC-MS/MS) and 21 proteins were determined to be enriched in FTLD using SILAC internal standards. In parallel, label-free quantification of only the unlabeled brain derived peptides by spectral counts (SC) and G-test analysis identified additional brain-specific proteins significantly enriched in disease. Several proteins determined to be enriched in FTLD using SILAC internal standards were not considered significant by G-test due to their low total number of SC. However, immunoblotting of FTLD and control samples confirmed enrichment of these proteins, highlighting the utility of SILAC internal standard to quantify low-abundance proteins in brain. Of these, the RNA binding protein PTB-associated splicing factor (PSF) was further characterized because of structural and functional similarities to TDP-43. Full-length PSF and shorter molecular weight fragments, likely resulting from proteolytic cleavage, were enriched in FTLD cases. Immunohistochemical analysis of PSF revealed predominately nuclear localization in control and FTLD brain tissue and was not associated with phosphorylated pathologic TDP-43 neuronal inclusions. However, in a subset of FTLD cases, PSF was aberrantly localized to the cytoplasm of oligodendrocytes. These data raise the possibility that PSF directed RNA processes in oligodendrocytes are altered in neurodegenerative disease.


Assuntos
Degeneração Lobar Frontotemporal/patologia , Marcação por Isótopo/métodos , Proteoma/análise , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Núcleo Celular/metabolismo , Cromatografia Líquida , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Peso Molecular , Neurônios/metabolismo , Oligodendroglia/metabolismo , Fator de Processamento Associado a PTB , Fosforilação , Cultura Primária de Células , Proteólise , Proteoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
18.
Mol Neurodegener ; 6: 82, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22126117

RESUMO

BACKGROUND: Detergent-insoluble protein accumulation and aggregation in the brain is one of the pathological hallmarks of neurodegenerative diseases. Here, we describe the identification of septin 11 (SEPT11), an enriched component of detergent-resistant fractions in frontotemporal lobar degeneration with ubiquitin-immunoreactive inclusions (FTLD-U), using large-scale unbiased proteomics approaches. RESULTS: We developed and applied orthogonal quantitative proteomic strategies for the unbiased identification of disease-associated proteins in FTLD-U. Using these approaches, we proteomically profiled detergent-insoluble protein extracts prepared from frontal cortex of FTLD-U cases, unaffected controls, or neurologic controls (i.e. Alzheimer's disease; AD). Among the proteins altered specifically in FTLD-U, we identified TAR DNA binding protein-43 (TDP-43), a known component of ubiquitinated inclusions. Moreover, we identified additional proteins enriched in detergent-resistant fractions in FTLD-U, and characterized one of them, SEPT11, in detail. Using independent highly sensitive targeted proteomics approaches, we confirmed the enrichment of SEPT11 in FTLD-U extracts. We further showed that SEPT11 is proteolytically cleaved into N-terminal fragments and, in addition to its prominent glial localization in normal brain, accumulates in thread-like pathology in affected cortex of FTLD-U patients. CONCLUSIONS: The proteomic discovery of insoluble SEPT11 accumulation in FTLD-U, along with novel pathological associations, highlights a role for this cytoskeleton-associated protein in the pathogenesis of this complex disorder.


Assuntos
Degeneração Lobar Frontotemporal/metabolismo , Septinas/química , Septinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Detergentes/química , Feminino , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Células HEK293 , Humanos , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Proteômica/métodos , Septinas/genética
19.
J Am Soc Mass Spectrom ; 22(2): 255-64, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21472585

RESUMO

Using a large set of high mass accuracy and resolution ETD tandem mass spectra, we characterized ETD-induced neutral losses. From these data we deduced the chemical formula for 20 of these losses. Many of them have been previously observed in electron-capture dissociation (ECD) spectra, such as losses of the side chains of arginine, aspartic acid, glutamic acid, glutamine, asparagine, leucine, histidine, and carbamidomethylated cysteine residues. With this information, we examined the diagnostic value of these amino acid-specific losses. Among 1285 peptide-spectrum matches, 92.5% have agreement between neutral loss-derived peptide amino acid composition and the peptide sequences. Moreover, we show that peptides can be uniquely identified by using only the accurate precursor mass and amino acid composition based on neutral losses; the median number of sequence candidates from an accurate mass query is reduced from 21 to 8 by adding side chain loss information. Besides increasing confidence in peptide identification, our findings suggest the potential use of these diagnostic losses in ETD spectra to improve false discovery rate estimation and to enhance the performance of scoring functions in database search algorithms.


Assuntos
Aminoácidos/química , Fragmentos de Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Aminoácidos/metabolismo , Cátions/química , Extratos Celulares , Bases de Dados de Proteínas , Elétrons , Células-Tronco Embrionárias , Humanos , Metaloendopeptidases/metabolismo , Fragmentos de Peptídeos/metabolismo
20.
J Proteome Res ; 9(12): 6368-79, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20886841

RESUMO

Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative disease characterized by behavioral abnormalities, personality changes, language dysfunction, and can co-occur with the development of motor neuron disease. One major pathological form of FTLD is characterized by intracellular deposition of ubiquitinated and phosphorylated TAR DNA binding protein-43 (TDP-43), suggesting that dysregulation in phosphorylation events may contribute to disease progression. However, to date systematic analysis of the phosphoproteome in FTLD brains has not been reported. In this study, we employed immobilized metal affinity chromatography (IMAC) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify phosphopeptides from FTLD and age-matched control post-mortem human brain tissue. Using this approach, we identified 786 phosphopeptides in frontal cortex (control and FTLD), in which the population of phosphopeptides represented approximately 50% of the total peptides analyzed. Label-free quantification using spectral counts revealed six proteins with significant changes in the FTLD phosphoproteome. N-myc-Downstream regulated gene 2 (NDRG2) and glial fibrillary acidic protein (GFAP) had an increased number of phosphospectra in FTLD, whereas microtubule associated protein 1A (MAP1A), reticulon 4 (RTN4; also referred to as neurite outgrowth inhibitor (Nogo)), protein kinase C gamma (PRKCG), and heat shock protein 90 kDa alpha, class A member 1(HSP90AA1) had significantly fewer phosphospectra compared to control brain. To validate these differences, we examined NDRG2 phosphorylation in FTLD brain by immunoblot analyses, and using a phosphoserine-13 (pSer13) GFAP monoclonal antibody we show an increase in pSer13 GFAP levels by immunoblot concomitant with increased overall GFAP levels in FTLD cases. These data highlight the utility of combining proteomic and phosphoproteomic strategies to characterize post-mortem human brain tissue.


Assuntos
Degeneração Lobar Frontotemporal/metabolismo , Proteína Glial Fibrilar Ácida/análise , Fosfoproteínas/análise , Proteômica/métodos , Proteínas Supressoras de Tumor/análise , Idoso , Sequência de Aminoácidos , Sítios de Ligação , Encéfalo/metabolismo , Encéfalo/patologia , Cromatografia de Afinidade , Cromatografia Líquida , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Feminino , Degeneração Lobar Frontotemporal/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Immunoblotting , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fosfopeptídeos/análise , Fosfopeptídeos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Mudanças Depois da Morte , Serina/metabolismo , Espectrometria de Massas em Tandem , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA