Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 45(11): 13653-13665, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37463082

RESUMO

Many attack paradigms against deep neural networks have been well studied, such as the backdoor attack in the training stage and the adversarial attack in the inference stage. In this article, we study a novel attack paradigm, the bit-flip based weight attack, which directly modifies weight bits of the attacked model in the deployment stage. To meet various attack scenarios, we propose a general formulation including terms to achieve effectiveness and stealthiness goals and a constraint on the number of bit-flips. Furthermore, benefitting from this extensible and flexible formulation, we present two cases with different malicious purposes, i.e., single sample attack (SSA) and triggered samples attack (TSA). SSA which aims at misclassifying a specific sample into a target class is a binary optimization with determining the state of the binary bits (0 or 1); TSA which is to misclassify the samples embedded with a specific trigger is a mixed integer programming (MIP) with flipped bits and a learnable trigger. Utilizing the latest technique in integer programming, we equivalently reformulate them as continuous optimization problems, whose approximate solutions can be effectively and efficiently obtained by the alternating direction method of multipliers (ADMM) method. Extensive experiments demonstrate the superiority of our methods.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37314915

RESUMO

Although adversarial training (AT) is regarded as a potential defense against backdoor attacks, AT and its variants have only yielded unsatisfactory results or have even inversely strengthened backdoor attacks. The large discrepancy between expectations and reality motivates us to thoroughly evaluate the effectiveness of AT against backdoor attacks across various settings for AT and backdoor attacks. We find that the type and budget of perturbations used in AT are important, and AT with common perturbations is only effective for certain backdoor trigger patterns. Based on these empirical findings, we present some practical suggestions for backdoor defense, including relaxed adversarial perturbation and composite AT. This work not only boosts our confidence in AT's ability to defend against backdoor attacks but also provides some important insights for future research.

3.
IEEE Trans Pattern Anal Mach Intell ; 45(2): 1388-1404, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35380957

RESUMO

Deep product quantization networks (DPQNs) have been successfully used in image retrieval tasks, due to their powerful feature extraction ability and high efficiency of encoding high-dimensional visual features. Recent studies show that deep neural networks (DNNs) are vulnerable to input with small and maliciously designed perturbations (a.k.a., adversarial examples) for classification. However, little effort has been devoted to investigating how adversarial examples affect DPQNs, which raises the potential safety hazard when deploying DPQNs in a commercial search engine. To this end, we propose an adversarial example generation framework by generating adversarial query images for DPQN-based retrieval systems. Unlike the adversarial generation for the classic image classification task that heavily relies on ground-truth labels, we alternatively perturb the probability distribution of centroids assignments for a clean query, then we can induce effective non-targeted attacks on DPQNs in white-box and black-box settings. Moreover, we further extend the non-targeted attack to a targeted attack by a novel sample space averaging scheme ([Formula: see text]AS), whose theoretical guarantee is also obtained. Extensive experiments show that our methods can create adversarial examples to successfully mislead the target DPQNs. Besides, we found that our methods both significantly degrade the retrieval performance under a wide variety of experimental settings. The source code is available at https://github.com/Kira0096/PQAG.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35731760

RESUMO

Backdoor attack intends to embed hidden backdoors into deep neural networks (DNNs), so that the attacked models perform well on benign samples, whereas their predictions will be maliciously changed if the hidden backdoor is activated by attacker-specified triggers. This threat could happen when the training process is not fully controlled, such as training on third-party datasets or adopting third-party models, which poses a new and realistic threat. Although backdoor learning is an emerging and rapidly growing research area, there is still no comprehensive and timely review of it. In this article, we present the first comprehensive survey of this realm. We summarize and categorize existing backdoor attacks and defenses based on their characteristics, and provide a unified framework for analyzing poisoning-based backdoor attacks. Besides, we also analyze the relation between backdoor attacks and relevant fields (i.e., adversarial attacks and data poisoning), and summarize widely adopted benchmark datasets. Finally, we briefly outline certain future research directions relying upon reviewed works. A curated list of backdoor-related resources is also available at https://github.com/THUYimingLi/backdoor-learning-resources.

5.
Entropy (Basel) ; 23(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34828096

RESUMO

Convolutional Neural Networks (CNNs) have been widely used in video super-resolution (VSR). Most existing VSR methods focus on how to utilize the information of multiple frames, while neglecting the feature correlations of the intermediate features, thus limiting the feature expression of the models. To address this problem, we propose a novel SAA network, that is, Scale-and-Attention-Aware Networks, to apply different attention to different temporal-length streams, while further exploring both spatial and channel attention on separate streams with a newly proposed Criss-Cross Channel Attention Module (C3AM). Experiments on public VSR datasets demonstrate the superiority of our method over other state-of-the-art methods in terms of both quantitative and qualitative metrics.

6.
Entropy (Basel) ; 22(11)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33286971

RESUMO

Deep Neural Networks (DNNs) usually work in an end-to-end manner. This makes the trained DNNs easy to use, but they remain an ambiguous decision process for every test case. Unfortunately, the interpretability of decisions is crucial in some scenarios, such as medical or financial data mining and decision-making. In this paper, we propose a Tree-Network-Tree (TNT) learning framework for explainable decision-making, where the knowledge is alternately transferred between the tree model and DNNs. Specifically, the proposed TNT learning framework exerts the advantages of different models at different stages: (1) a novel James-Stein Decision Tree (JSDT) is proposed to generate better knowledge representations for DNNs, especially when the input data are in low-frequency or low-quality; (2) the DNNs output high-performing prediction result from the knowledge embedding inputs and behave as a teacher model for the following tree model; and (3) a novel distillable Gradient Boosted Decision Tree (dGBDT) is proposed to learn interpretable trees from the soft labels and make a comparable prediction as DNNs do. Extensive experiments on various machine learning tasks demonstrated the effectiveness of the proposed method.

7.
IEEE Trans Neural Netw Learn Syst ; 29(8): 3510-3523, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28816676

RESUMO

Random forests (RFs) are recognized as one type of ensemble learning method and are effective for the most classification and regression tasks. Despite their impressive empirical performance, the theory of RFs has yet been fully proved. Several theoretically guaranteed RF variants have been presented, but their poor practical performance has been criticized. In this paper, a novel RF framework is proposed, named Bernoulli RFs (BRFs), with the aim of solving the RF dilemma between theoretical consistency and empirical performance. BRF uses two independent Bernoulli distributions to simplify the tree construction, in contrast to the RFs proposed by Breiman. The two Bernoulli distributions are separately used to control the splitting feature and splitting point selection processes of tree construction. Consequently, theoretical consistency is ensured in BRF, i.e., the convergence of learning performance to optimum will be guaranteed when infinite data are given. Importantly, our proposed BRF is consistent for both classification and regression. The best empirical performance is achieved by BRF when it is compared with state-of-the-art theoretical/consistent RFs. This advance in RF research toward closing the gap between theory and practice is verified by the theoretical and experimental studies in this paper.

8.
PLoS One ; 10(3): e0116312, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793282

RESUMO

In this paper, we propose a full-reference (FR) image quality assessment (IQA) scheme, which evaluates image fidelity from two aspects: the inter-patch similarity and the intra-patch similarity. The scheme is performed in a patch-wise fashion so that a quality map can be obtained. On one hand, we investigate the disparity between one image patch and its adjacent ones. This disparity is visually described by an inter-patch feature, where the hybrid effect of luminance masking and contrast masking is taken into account. The inter-patch similarity is further measured by modifying the normalized correlation coefficient (NCC). On the other hand, we also attach importance to the impact of image contents within one patch on the IQA problem. For the intra-patch feature, we consider image curvature as an important complement of image gradient. According to local image contents, the intra-patch similarity is measured by adaptively comparing image curvature and gradient. Besides, a nonlinear integration of the inter-patch and intra-patch similarity is presented to obtain an overall score of image quality. The experiments conducted on six publicly available image databases show that our scheme achieves better performance in comparison with several state-of-the-art schemes.


Assuntos
Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Bases de Dados como Assunto , Humanos , Curva ROC
9.
Artigo em Inglês | MEDLINE | ID: mdl-17282158

RESUMO

Sequences with generalized errors which are called mutations in bioinformatics and generalized error-correcting codes are studied in this paper. In the areas of bioinformatics, computer science and information theory, sequences with generalized errors are discussed respectively for different aims. Firstly, we give the definitions of alignment distance and Levenshtein distance by expansion sequences and discuss their properties and relations. Then the modular structure theory is introduced for strictly describe the expansion sequences. We show that the expansion modular structures of sequences form a Boolean algebra. As applications of the modular structure theory, we give a new and more strict proof of triangle inequality for alignment distance. At last, the definition and construction of generalized error-correcting codes are studied, and some optimal codes with small length are listed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA