Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Phys Chem A ; 128(19): 3801-3811, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38709493

RESUMO

The 2-(2-aminophenyl)naphthalene molecule attracted much attention due to excited-state intramolecular proton transfer (ESIPT) from an amino NH2 group to a carbon atom of an adjacent aromatic ring. The ESIPT mechanisms of 2-(2-aminophenyl)naphthalene are still unclear. Herein, the decay pathways of this molecule in vacuum were investigated by combining static electronic structure calculations and nonadiabatic dynamics simulations. The calculations indicated the existence of two stable structures (S0-1 and S0-2) in the S0 and S1 states. For the S0-1 isomer, upon excitation to the Franck-Condon point, the system relaxed to the S1 minimum quickly, and then there exist four decay pathways (two ESIPT ones and two decay channels with C atom pyramidalization). In the ESIPT decay pathways, the system encounters the S1S0-PT-1 or S1S0-PT-2 conical intersection, which funnels the system rapidly to the S0 state. In the other two pathways, the system de-excited from the S1 to the S0 state via the S1S0-1 or S1S0-2 conical intersection. For the S0-2 structure, the decay pathways were similar to those of S0-1. The dynamics simulations showed that 75 and 69% of trajectories experienced the two ESIPT conical intersections for the S0-1 and S0-2 structures, respectively. Our simulations showed that the lifetime of the S1 state of S0-1 (S0-2) is estimated to be 358 (400) fs. Notably, we not only found the detailed reaction mechanism of the system but also found that the different ground-state configurations of this system have little effect on the reaction mechanism in vacuum.

2.
J Phys Chem A ; 128(11): 1984-1992, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38446415

RESUMO

Excited-state intramolecular double proton transfer (ESIDPT) has received much attention because of its widespread existence in the life reactions of living organisms, and materials with this property are significant for their special luminescent properties. In this work, the complete active space self-consistent field (CASSCF) and OM2/multireference configuration interaction (OM2/MRCI) methods have been employed to study the static electronic structure calculations of the photochemistry and the possibility of ESIDPT process of hydroxyquinoline benzimidazole (HQB) molecule, along with the nonadiabatic dynamics simulations. The computational results show that the HQB molecule is relaxed to the S1-ENOL minimum after being excited to the Franck-Condon point in the S1 state. Subsequently, during the nonadiabatic deactivation process, the OH···N proton transfer and the twisting of benzimidazole occur before arriving at the single proton transfer conical intersection S1S0-KETO. Finally, the system can either return to the initial ground-state structure S0-ENOL or to the single proton transfer ground-state structure S0-KETO, both of which have almost the same probability. The dynamics simulations also show that no double proton transfer occurs. The excited-state lifetime of HQB is fitted to 1.1 ps, and only 64% of the dynamic trajectories return to the ground state within the 2.0 ps simulation time. We hope the detailed reaction mechanism of the HQB molecule will provide new insights into similar systems.

3.
J Phys Chem A ; 128(3): 563-571, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38227954

RESUMO

E2H2 (E = As, Sb, Bi) structures involving multiple bonds have attracted much attention recently. The E2H3+ cations (protonated E2H2) are predicted to be viable with substantial proton affinities (>180 kcal/mol). Herein, the bonding characters and energetics of a number of E2H3+ isomers are explored through CCSD(T) and DFT methods. For the As2H3+ system, the CCSD(T)/cc-pVQZ-PP method predicts that the vinylidene-like structure lies lowest in energy, with the trans and cis isomers higher by 6.7 and 9.3 kcal/mol, respectively. However, for Sb2H3+ and Bi2H3+ systems, the trans isomer is the global minimum, while the energies of the cis and vinylidene-like structures are higher, respectively, by 2.0 and 2.4 kcal/mol for Sb2H3+ and 1.6 and 15.0 kcal/mol for Bi2H3+. Thus, the vinyledene-like structure is the lowest energy for the arsenic system but only a transition state of the bismuth system. With permanent dipole moments, all minima may be observable in microwave experiments. Besides, we have also obtained transition states and planar-cis structures with higher energies. The current results should provide new insights into the various isomers and provide a number of predictions for future experiments.

4.
Phys Chem Chem Phys ; 25(44): 30679-30686, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37933753

RESUMO

Triazole compounds are important organic systems with excellent electronic properties, which have diagnostic potential in the fields of organic electronics and organic photovoltaics. The important photophysical nature of these systems is the transformation between the enol and keto forms after excited-state proton transfer. In this study, the IR vibrational spectrum, ESIPT mechanism, and excited-state decay dynamics of 2,2'-(1-phenyl-1H-1,2,4-triazole-3,5-diyl)diphenol (ExPh) were explored using electronic structure calculations and non-adiabatic dynamics simulations. Two S1/S0 conical intersections with distinct proton transfer (ESIPT-I and ESIPT-II) involved were obtained. The associated two-dimensional S1 minimum-energy potential energy surface indicated that the dynamical roles of these two S1/S0 conical intersections in the S1 excited-state decay were quite different. The ESIPT-I reaction was more favorable to occur than the ESIPT-II process. Our dynamics simulations supported this hypothesis with the whole trajectories decaying to the ground state via the S1S0-1 conical intersection, which involved the ESIPT-I process. The ESIPT-Involved efficient deactivation pathway could be partially responsible for the decrease in fluorescence emission. These results and ESIPT mechanisms are helpful for understanding the decay pathways of similar systems.

5.
Phys Chem Chem Phys ; 25(28): 19098-19105, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37427748

RESUMO

The small molecule built around the benzene ring, diacetyl phenylenediamine (DAPA), has attracted much attention due to its synthesis accessibility, large Stokes shift, etc. However, its meta structure m-DAPA does not fluoresce. In a previous investigation, it was found that such a property is due to the fact that it undergoes an energy-reasonable double proton transfer conical intersection during the deactivation of the S1 excited-state, then returns to the ground state by a nonradiative relaxation process eventually. However, our static electronic structure calculations and non-adiabatic dynamics analysis results indicate that only one reasonable non-adiabatic deactivation channel exists: after being excited to the S1 state, m-DAPA undergoes an ultrafast and barrierless ESIPT process and reaches the single-proton-transfer conical intersection. Subsequently, the system either returns to the keto-form S0 state minimum with proton reversion or returns to the single-proton-transfer S0 minimum after undergoing a slight twist of the acetyl group. The dynamics results show that the S1 excited-state lifetime of m-DAPA is 139 fs. In other words, we propose an efficient single-proton-transfer non-adiabatic deactivation channel of m-DAPA that is different from previous work, which can provide important mechanistic information of similar fluorescent materials.

6.
Toxicol Appl Pharmacol ; 473: 116582, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295732

RESUMO

A high incidence of thymic lymphoma has been noted in mice deficient of retinoid-related orphan receptor γ2 (RORγ2), which is required for differentiation of naïve CD4+ T cells into TH17 cells. Using a RORγ homozygous knockout (KO) mouse model of thymic lymphoma, we characterized this tumor progression and investigated the utility of 5-hydroxymethylcytosine (5hmC) signatures as a non-invasive circulating biomarker for early prediction of malignancy. No evidence for malignancy was noted in the wild-type mice, while primary thymic lymphoma with multi-organ metastasis was observed microscopically in 97% of the homozygous RORγ KO mice. The severity of thymic lymphoma was not age-dependent in the KO mice of 2 to 4 months old. Differential enrichment of 5hmC in thymic DNA and plasma cell-free DNA (cfDNA) was compared across different stages of tumor progression. Random forest modeling of plasma cfDNA achieved good predictivity (AUC = 0.74) in distinguishing early non-metastatic thymic lymphoma compared to cancer-free controls, while perfect predictivity was achieved with advanced multi-organ metastatic disease (AUC = 1.00). Lymphoid-specific genes involved in thymocyte selection during T cell development (Themis, Tox) were differentially enriched in both plasma and thymic tissue. This could help in differentiating thymic lymphoma from other tumors commonly detected in rodent carcinogenicity studies used in pharmaceutical drug development to inform human malignancy risk. Overall, these results provide a proof-of-concept for using circulating cfDNA profiles in rodent carcinogenicity studies for early risk assessment of novel pharmaceutical targets.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Animais , Humanos , Lactente , Camundongos , Ácidos Nucleicos Livres/genética , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares
7.
Drug Resist Updat ; 67: 100915, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36641841

RESUMO

AIMS: This study aims at investigating the role of a neighbor long non-coding RNA (lncRNA) of HDAC4 (LOC85009) in docetaxel (DTX) resistance of lung adenocarcinoma (LUAD). METHODS: RT-qPCR was used to analyze LOC85009 expression in DTX-resistant LUAD cells. In vitro and in vivo experiments were applied to detect the influence of LOC85009 on LUAD cell growth and xenograft tumor growth. DNA pull down assay, RNA pull down assay, ChIP assay, CoIP assay and RIP assay were performed to identify the direct interactions between factors. RESULTS: LOC85009 was lowly-expressed in DTX-resistant LUAD cells. Functionally, LOC85009 overexpression inhibited DTX resistance and cell proliferation but triggered cell apoptosis. Moreover, we identified that LOC85009 was transferred from LUAD cells to DTX-resistant LUAD cells via exosomes. Exosomal LOC85009 inhibited DTX resistance, proliferation and autophagy while induced apoptosis in DTX-resistant cells. Additionally, we found that LOC85009 sequestered ubiquitin-specific proteinase 5 (USP5) to destabilize upstream transcription factor 1 (USF1) protein, thereby inactivating ATG5 transcription. CONCLUSIONS: Exosomal LOC85009 inhibits DTX resistance through regulation of ATG5-induced autophagy via USP5/USF1 axis, suggesting that LOC85009 might be a potential target to reverse DTX resistance in the treatment of LUAD.


Assuntos
Adenocarcinoma , Docetaxel , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , MicroRNAs , Humanos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética
8.
Phys Chem Chem Phys ; 24(48): 29918-29926, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36468632

RESUMO

Photocyclization and photoisomerization of fulgides have been extensively studied experimentally and computationally due to their significant potential applications for example as photoswitches in memory devices. However, the reported excited-state decay mechanisms of fulgides do not include the effects of solvation explicitly to date. Herein, calculations using the high-level MS-CASPT2//CASSCF method were conducted to explore the photoinduced excited-state decay processes of the Eα conformer of a fulgide derivative in toluene with solvent effects treated by implicit PCM and explicit QM/MM models, respectively. Several minima and conical intersections were optimized successfully in and between the S0 and S1 states; then, two nonadiabatic excited-state decay channels that could efficiently drive the system to the ground state were proposed based on the excited-state ring-closure and isomerization paths. In addition, we also found that in the ring-closure path, the potential energy surface is essentially barrierless before approaching the conical intersection, while it needs to overcome a small energy barrier along the E → Z photoisomerization path for the nonadiabatic S1 → S0 internal conversion process. The present computational results could provide useful mechanistic insights into the photoinduced cyclization and isomerization reactions of fulgide and its derivatives.


Assuntos
Tolueno , Ciclização
9.
Phys Chem Chem Phys ; 24(35): 21358-21366, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36043575

RESUMO

The excited-state proton transfer processes and the formation mechanism of quinone methide of (1-naphthyl)phenol were investigated by combining static electronic structure calculations and non-adiabatic dynamics simulations in vacuum. The results indicated the existence of two minimum energy structures (S0-ENOL-1 and S0-ENOL-2) in the ground and excited states, which correspond to two ESIPT pathways. Upon excitation of S0-ENOL-1 to the bright S1 state, the system relaxes to the S1 minimum quickly in the enol region, for which two decay pathways have been described. The first is a barrierless ESIPT-1 process that generates keto species. Afterwards, the system encounters a keto conical intersection, which funnels the system to the ground state. The generated keto species, in the S0 state, either regenerated the starting material via ground-state proton transfer or yielded the keto product at the end of the simulations. In the other pathway, the system de-excites from the S1 state to the S0 state via one enol-type conical intersection. The dynamics simulations showed that 58.8% of trajectories experience keto-type conical intersection and the rest undergo enol-type conical intersection. Besides the ESIPT-1 process, a new-type ESIPT (ESIPT-2), which was not observed experimentally, was found with the irradiation of S0-ENOL-2. The ESIPT-2 process occurs after overcoming a small barrier (0.9 kcal mol-1) and yields a distinct quinone methide. Our simulation results also showed that the S1 lifetime of S0-ENOL-1 (S0-ENOL-2) would be 437 (617) fs in the gas phase. These results provide detailed and important mechanistic insights into the systems in which ESPT to carbon atoms occurs.


Assuntos
Prótons , Teoria Quântica , Eletrônica , Indolquinonas , Fenol , Fenóis , Fotoquímica
10.
J Phys Chem A ; 126(25): 4002-4012, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35730538

RESUMO

3,5-bis(2-Hydroxyphenyl)-1H-1,2,4-triazole (bis-HPTA) has attracted wide attention due to the important application in the detection of microorganisms and insecticidal activity. However, the mechanisms of excited-state intramolecular proton transfer (ESIPT) process and decay pathways are still a matter of debate. In this work, we have comprehensively investigated the photodynamics of bis-HPTA by executing combined electronic structure calculations and nonadiabatic surface-hopping dynamics simulations. Based on the computed electronic structure and dynamics information, we propose two nonadiabatic deactivation channels that efficiently populate the ground state from the Franck-Condon region. In the first one, after being excited to the bright S1 state, bis-HPTA molecule undergoes an ultrafast and barrierless ESIPT-1 process. Then, the system encounters with an energetically accessible S1/S0 conical intersection (CI), which funnels the system to the ground state speedily. Afterward, the keto species either arrives at the keto product or return to its enol species via a ground-state proton transfer in the S0 state. In the other excited-state decay channel, the S1 system hops to the ground state through a different CI, which involves the ESIPT-2 process. In our dynamics simulations, about 79.6% of the trajectories decay to the S0 state via the first CI, while the remaining ones employ the second conical intersection. The results of dynamics simulations also demonstrated that the lifetime of the S1 state is estimated as 315 fs. The present work will give elaborating mechanistic information of similar compounds in various environments.


Assuntos
Prótons , Teoria Quântica , Eletrônica , Triazóis
11.
J Hepatol ; 75(5): 1083-1095, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34242700

RESUMO

BACKGROUND & AIMS: Immune checkpoint inhibitors (ICIs) are associated with immune-related adverse events (irAEs) which are more severe when ICIs are used in combination. We aimed to use a mouse model to elucidate the molecular mechanisms of immune-related hepatitis, one of the common irAEs associated with ICIs. METHODS: Immune phenotyping and molecular profiling were performed on Pdcd1-/- mice treated with anti-CTLA4 and/or the IDO1 inhibitor epacadostat or a 4-1BB agonistic antibody. RESULTS: ICI combination-induced hepatitis and 4-1BB agonist-mediated hepatitis share similar features yet maintain distinct immune signatures. Both were characterized by an expansion of periportal infiltrates and pan-zonal inflammation albeit with different morphologic characteristics. In both cases, infiltrates were predominantly CD4+ and CD8+ T cells with upregulated T-cell activation markers, ICOS and CD44. Depletion of CD8+ T cells abolished ICI-mediated hepatitis. Single-cell transcriptomics revealed that the hepatitis induced by combination ICIs is associated with a robust immune activation signature in all subtypes of T cells and T helper 1 skewing. Expression profiling revealed a central role for IFNγ and liver monocyte-derived macrophages in promoting a pro-inflammatory T-cell response to ICI combination and 4-1BB agonism. CONCLUSION: We developed a novel mouse model which offers significant value in yielding deeper mechanistic insight into immune-mediated liver toxicity associated with various immunotherapies. LAY SUMMARY: Hepatitis is one of the common immune-related adverse events in cancer patients receiving immune checkpoint inhibitor (ICI) therapy. The mechanisms of ICI-induced hepatitis are not well understood. In this paper, we identify key molecular mechanisms mediating immune intracellular crosstalk between liver T cells and macrophages in response to ICI in a mouse model.


Assuntos
Hepatite/imunologia , Células Mieloides/metabolismo , Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , Imunoterapia/métodos , Imunoterapia/estatística & dados numéricos , Camundongos , Monócitos/imunologia
13.
Sci Total Environ ; 738: 139909, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531605

RESUMO

In the present study, electrochemical oxidation of sulfamethoxazole (SMX) with Boron-doped Diamond (BDD) anode and Stainless Steel (SS) cathode was investigated systematically. The effects of current density, initial pH, supporting electrolyte and natural organic matter (NOM) on SMX degradation were explored. Under the conditions of current density 30 mA cm-2, 0.1 M Na2SO4 used as supporting electrolyte, pH of 7 and without NOM affect, SMX was completely removed after 3 h electrolysis. COD removal efficiency, current efficiency and energy consumption were 65.6%, 40.1%, 72 kWh kg COD-1, respectively. Degradation mechanism was analyzed based on the active sites of SMX identified by density functional theory (DFT) calculation and intermediates analysis by HPLC-Q-TOF-MS/MS. Three possible degradation pathways were proposed, with the replacement of -NH2 at aromatic ring by -OH, the oxidation of -NH2 to -NO2 and the addition of -OH on isoxazole ring observed. The active sites detected in reaction matched the DFT calculation results exactly. The toxicity of intermediates produced during electrolysis process was evaluated by Escherichia coli experiment. Results showed that, after 2 h electrolysis, the inhibition ratio was decreased from the initial value of 22.8% to 10%, which has already achieved the safety boundary. After 4 h electrolysis, the toxicity was almost zero even with still 60% COD remained in the solution. This phenomenon demonstrated that the toxicity of SMX and its intermediate products was reduced significantly during electrolysis process.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água/análise , Boro , Diamante , Eletrodos , Cinética , Oxirredução , Espectrometria de Massas em Tandem
14.
Toxicol Pathol ; 48(3): 481-493, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31918642

RESUMO

Several chemicals and pharmaceuticals increase the incidence of hemangiosarcomas (HSAs) in mice, but the relevance to humans is uncertain. Recently, canine HSAs were identified as a powerful tool for investigating the pathogenesis of human HSAs. To characterize the cellular phenotype of canine HSAs, we evaluated immunoreactivity and/or messenger RNA (mRNA) expression of markers for hematopoietic stem cells (HSCs), endothelial cells (ECs), a tumor suppressor protein, and a myeloid marker in canine HSAs. Neoplastic canine cells expressed EC markers and a myeloid marker, but expressed HSC markers less consistently. The canine tumor expression results were then compared to previously published immunoreactivity results for these markers in human and mouse HSAs. There are 2 noteworthy differences across species: (1) most human HSAs had HSC marker expression, indicating that they were comprised of tumor cells that were less differentiated than those in canine and mouse tumors; and (2) human and canine HSAs expressed a late-stage EC maturation marker, whereas mouse HSAs were negative, suggesting that human and canine tumors may retain greater differentiation potential than mouse tumors. These results indicate that HSA development is variable across species and that caution is necessary when discussing translation of carcinogenic risk from animal models to humans.


Assuntos
Biomarcadores Tumorais/análise , Doenças do Cão/patologia , Hemangiossarcoma/patologia , Animais , Modelos Animais de Doenças , Cães , Células Progenitoras Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Especificidade da Espécie
15.
Kaohsiung J Med Sci ; 36(2): 114-121, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31688986

RESUMO

To screen the key circulating microRNAs (miRNAs) involved in missed abortion (MA) and explore their role in MA process. We examined the miRNA profile from the serum of three MA patients and three early pregnancy induced abortion patients (controls) by next-generation sequencing. We analyzed the target genes of the differentially expressed (DE) miRNAs to analyze the function and pathway enrichment using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, respectively. We validated five candidate miRNAs by real time-qPCR. Integrated miRNA-mRNA-pathway network analysis was performed to show the interaction network of the candidate miRNAs and their target genes of interest with the involved pathways. It was observed that 227 miRNAs were differently expressed between the MA group and the early pregnancy control group, with 58 miRNAs downregulated and 169 miRNAs upregulated in the MA group. Real-time qPCR results revealed that expression of the five candidate miRNAs, namely hsa-miR-22-3p, hsa-miR-145-3p, hsa-miR-107, hsa-miR-361-3p, and hsa-miR-378c, was consistent with the miRNA data obtained by sequencing. Integrated miRNA-mRNA-pathway network analysis illustrated that target genes of the candidate miRNAs were mainly involved in the PI3K-Akt signaling pathway, HIF-1 signaling pathway, and VEGF signaling pathway, which would have potential significance in pregnancy and MA. We are the first to reveal the DE miRNAs involved in MA and illustrate their functional interaction network. These results might provide potential circulating biomarkers and new therapeutic targets for MA.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Adulto , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real
16.
Phys Chem Chem Phys ; 21(19): 10086-10094, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31062014

RESUMO

Due to the significant applications in bioimaging, sensing, optoelectronics etc., photoluminescent materials have attracted more and more attention in recent years. 1,5-Benzodiazepin-2-one and its derivatives have been used as fluorogenic probes for the detection of biothiols. However, their photochemical and photophysical properties have remained ambiguous until now. In this work, we have adopted combined static electronic structure calculations and nonadiabatic surface-hopping dynamics simulations to study the photochemical mechanism of 1,5-benzodiazepin-2-one. Firstly, we optimized minima and conical intersections in S0 and S1 states; then, we proposed three nonadiabatic decay pathways that efficiently populate the ground state from the Franck-Condon region based on computed electronic structure information and dynamics simulations. In the first pathway, upon photoexcitation to the S1 state, the system proceeds with an ultrafast excited-state intramolecular proton transfer (ESIPT) process. Then, the molecule tends to rotate around the C-C bond until it encounters keto conical intersections, from which the system can easily decay to the ground state. The other two pathways involve the enol channels in which the S1 system hops to the ground state via two enol S1/S0 conical intersections, respectively. These three energetically allowed S1 excited-state deactivation pathways are responsible for the decrease of fluorescence quantum yield. The present work will provide detailed mechanistic information of similar systems.

17.
PLoS One ; 14(5): e0217276, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31112568

RESUMO

Cancer cells harness immune checkpoints such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1) and indoleamine 2,3-dioxygenase 1 (IDO1) to evade immune control. Checkpoint inhibitors have demonstrated durable anti-tumor efficacy in human and preclinical models. Liver toxicity is one of the common immune-related adverse events associated with checkpoint inhibitors (CPIs) and its frequency and severity often increase significantly during CPI combination therapies. We aim to develop a mouse model to elucidate the immune mechanisms of CPI-associated liver toxicity. Co-administration of CTLA-4 blocking antibody, 9D9, and/or an IDO1 inhibitor, epacadostat in wild-type and PD-1-/- mice (to simulate the effect of PD1 blockade) synergistically induced liver injury and immune cell infiltration. Infiltrated cells were primarily composed of CD8+ T cells and positively associated with hepatocyte necrosis. Strikingly, sites of hepatocyte necrosis were frequently surrounded by clusters of mononuclear immune cells. CPI treatments resulted in increased expression of genes associated with hepatocyte cell death, leukocyte migration and T cell activation in the liver. In conclusion, blockade of immune checkpoints PD-1, CTLA-4, and IDO1 act synergistically to enhance T cell infiltration and activity in the liver, leading to hepatocyte death.


Assuntos
Antígeno CTLA-4/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Fígado/imunologia , Fígado/lesões , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Modelos Animais de Doenças , Feminino , Hepatócitos/patologia , Humanos , Ipilimumab/administração & dosagem , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nivolumabe/administração & dosagem , Oximas/administração & dosagem , Receptor de Morte Celular Programada 1/deficiência , Receptor de Morte Celular Programada 1/genética , Sulfonamidas/administração & dosagem
18.
J Phys Chem A ; 122(40): 7954-7961, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30230335

RESUMO

Flavin molecules play an important role in light-driven biological activities. They have drawn significant interest for decades because of their rich photochemistry. In addition to the well-explored FADH- (anionic hydroquinone), which is supposed to be the only catalytic active state to repair DNA lesions, other four flavin molecules (i.e., FAD, FAD·-, FADH·, and FADH2) in three redox forms combined the redox cycle of flavins. Although extensive studies have been carried out for steady-state spectroscopic properties of five redox flavins in various proteins and solutions, the photochemistry and photophysical properties of those different redox states significantly complicate the corresponding theoretical studies. In present work, we employed the ab initio wave function based CASSCF method to systematically investigate the excited state decay pathways of flavins in five redox forms through two approaches. First, the comparison of the absorption and emission spectra from both theoretical calculation and experiment allows a detailed mapping of the transition properties of different redox states in flavins. Second, we identified four kinds of conical intersections (CIs) for five different redox states as the possible deactivation mechanisms responsible for internal conversion or intersystem crossing from the initially populated excited state. The theoretical calculations provide atomic details for the photochemical and photophysical properties of flavins on photoinduced processes. Our findings highlight the indispensable effects of CIs in the excited state decay of flavin molecules and thereby provide basic theoretical information for light-driven biological activities.

19.
Phys Chem Chem Phys ; 20(9): 6524-6532, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29446425

RESUMO

Pigment Yellow 101 (PY101) is widely used as a typical pigment due to its excellent excited-state properties. However, the origin of its photostability is still elusive. In this work, we have systematically investigated the photodynamics of PY101 by performing combined electronic structure calculations and trajectory-based nonadiabatic dynamics simulations. On the basis of the results, we have found that upon photoexcitation to the S1 state, PY101 undergoes an essentially barrierless excited-state intramolecular single proton transfer generating an S1 keto species. In the keto region, there is an energetically accessible S1/S0 conical intersection that funnels the system to the S0 state quickly. In the S0 state, the keto species either goes back to its trans-enol species through a ground-state reverse hydrogen transfer or arrives at the cis-keto region. In addition, we have found an additional excited-state decay channel for the S1 enol species, which is directly linked to an S1/S0 conical intersection located in the enol region. This mechanism has also been confirmed by our dynamics simulations, in which about 54% of the trajectories decay to the S0 state via the enol S1/S0 conical intersection; while the remaining ones employ the keto S1/S0 conical intersection. The gained mechanistic information helps us understand the photostability of the PY101 chromophore and its variants with the same molecular scaffold.

20.
J Phys Chem B ; 120(35): 9329-37, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27525736

RESUMO

2-Aminooxazole is generally considered a prebiotic precursor of ribonucleotides on the early earth. Its pentose compound, pentose aminooxazoline, has been suggested to be a key intermediate in the prebiotic synthetic scenario. In this article, detailed mechanism of the photochemistry of pentose aminooxazoline has been studied by performing density functional theory and multireference complete active space self-consistent field calculations. Parallel to the "ring-puckering" process, which leads to ultrafast nonradiative deactivation, several other photodissociation channels are explored in detail. In addition, the influences of the pentose structure and solvation effects with both implicit and explicit water models have been uncovered for both neutral and protonated forms. The current theoretical results provide very important information not only for the photostability of RNA nucleotides but also for an in-depth understanding of the synthesis of other prebiotic nucleotides.


Assuntos
Oxazóis/química , Oxazóis/efeitos da radiação , Pentoses/química , Pentoses/efeitos da radiação , Processos Fotoquímicos , Prebióticos , RNA/química , Teoria Quântica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA