RESUMO
The purpose of this study is to investigate the influencing factors of abnormal pulmonary ventilation function in occupational exposed populations and to establish a risk prediction model. The findings will provide a basis for formulating corresponding strategies for the prevention and treatment of occupational diseases. The study focused on workers who underwent occupational health examinations in the year 2020. Statistical analysis was conducted using methods such as t-tests, chi-square tests, and multiple logistic regression analysis. Additionally, machine learning methods were employed to establish multiple models to address classification problems. Among the 7472 workers who participated in the occupational health examination, 1681 cases of abnormal pulmonary ventilation function were detected, resulting in a detection rate of 22.6%. Based on the analysis of occupational hazard data, a risk prediction model was established. Age, work tenure, type of the employing enterprise, and type of dust exposure are all identified as driving factors for abnormal pulmonary function. These factors were used as predictive variables for establishing the risk prediction model. Among the various models evaluated, the logistic regression model was found to be the optimal model for predicting abnormal pulmonary ventilation function.
Assuntos
Exposição Ocupacional , Ventilação Pulmonar , Humanos , Masculino , Exposição Ocupacional/efeitos adversos , Adulto , Feminino , Pessoa de Meia-Idade , Ventilação Pulmonar/fisiologia , Fatores de Risco , Doenças Profissionais/epidemiologia , Doenças Profissionais/fisiopatologia , Doenças Profissionais/etiologia , Modelos Logísticos , Medição de Risco , Testes de Função Respiratória , Aprendizado de Máquina , PoeiraRESUMO
BACKGROUND: Ulcerative colitis (UC) is a chronic inflammatory condition affecting the colon, with a global incidence that is rising. Despite the increasing prevalence, effective treatment options for UC remain limited. METHODS: We utilized an NF-κB promoter dual fluorescence reporter system to screen for compounds that could inhibit p65 and IκBα phosphorylation. The anti-hypertension drug lacidipine was identified as a candidate. Its efficacy was further evaluated in a murine model of dextran sulfate sodium (DSS)-induced colitis. The analysis included the assessment of colon lesions, inflammation markers, and signal pathway activation, with a focus on NF-κB and Notch signaling. RESULTS: Lacidipine effectively inhibited p65 and IκBα phosphorylation in the reporter system. In the DSS-induced colitis murine model, lacidipine treatment led to a reduction in colon lesions and inflammatory markers. Target analysis showed significant enrichment of the Notch signaling pathway. Additionally, lacidipine inhibited both NF-κB and Notch activation in DSS-stimulated colons. CONCLUSION: Lacidipine demonstrated a protective effect in UC, reducing inflammation and modulating key signaling pathways. These findings suggest that lacidipine could be a promising candidate for the treatment of UC.
Assuntos
Sulfato de Dextrana , Di-Hidropiridinas , NF-kappa B , Receptores Notch , Transdução de Sinais , Animais , Di-Hidropiridinas/farmacologia , Di-Hidropiridinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Camundongos , Receptores Notch/metabolismo , Receptores Notch/genética , Receptores Notch/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Masculino , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite/patologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Fosforilação/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologiaRESUMO
CD4+T cells play a notable role in immune protection at different stages of life. During aging, the interaction between the body's internal and external environment and CD4+T cells results in a series of changes in the CD4+T cells pool making it involved in immunosenescence. Many studies have extensively examined the subsets and functionality of CD4+T cells within the immune system, highlighted their pivotal role in disease pathogenesis, progression, and therapeutic interventions. However, the underlying mechanism of CD4+T cells senescence and its intricate association with diseases remains to be elucidated and comprehensively understood. By summarizing the immunosenescent progress and network of CD4+T cell subsets, we reveal the crucial role of CD4+T cells in the occurrence and development of age-related diseases. Furthermore, we provide new insights and theoretical foundations for diseases targeting CD4+T cell subsets aging as a treatment focus, offering novel approaches for therapy, especially in infections, cancers, autoimmune diseases, and other diseases in the elderly.
Assuntos
Envelhecimento , Linfócitos T CD4-Positivos , Imunossenescência , Humanos , Linfócitos T CD4-Positivos/imunologia , Envelhecimento/imunologia , AnimaisRESUMO
Due to the limited self-repair ability of the annulus fibrosus (AF), current tissue engineering strategies tend to use structurally biomimetic scaffolds for AF defect repair. However, the poor integration between implanted scaffolds and tissue severely affects their therapeutic effects. To solve this issue, we prepared a multifunctional scaffold containing loaded lysyl oxidase (LOX) plasmid DNA exosomes and manganese dioxide nanoparticles (MnO2 NPs). LOX facilitates extracellular matrix (ECM) cross-linking, while MnO2 NPs inhibit excessive reactive oxygen species (ROS)-induced ECM degradation at the injury site, enhancing the crosslinking effect of LOX. Our results revealed that this multifunctional scaffold significantly facilitated the integration between the scaffold and AF tissue. Cells were able to migrate into the scaffold, indicating that the scaffold was not encapsulated as a foreign body by fibrous tissue. The functional scaffold was closely integrated with the tissue, effectively enhancing the mechanical properties, and preventing vascular invasion, which emphasized the importance of scaffold-tissue integration in AF repair.
RESUMO
Osteoarthritis (OA) is a prevalent disease of the musculoskeletal system that causes functional deterioration and diminished quality of life. Myrislignan (MRL) has a wide range of pharmacological characteristics, including an anti-inflammatory ability. Although inflammation is a major cause of OA, the role of MRL in OA treatment is still not well-understood. In this study, we analyze the anti-inflammatory and anti-ECM degradation effects of MRL both in vivo and in vitro. Rat primary chondrocytes were treated with interleukin-1ß (IL-1ß) to simulate inflammatory environmental conditions and OA in vitro. The in vivo OA rat model was established by anterior cruciate ligament transection (ACLT) on rat. Our investigation discovered that MRL lowers the IL-1ß-activated tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX2) and inducible nitric-oxide synthase (iNOS) expression in chondrocytes. Moreover, MRL effectively alleviates IL-1ß-induced extracellular matrix (ECM) degradation and promotes ECM synthesis in chondrocytes by upregulating the mRNA level expression of collagen-II and aggrecan (ACAN), downregulating the expression of matrix metalloproteinases-3,-13 (MMP-3, MMP-13), and a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5). Gene expression profiles of different groups identified DEGs that were mainly enriched in functions associated with NF-κB signaling pathway, and other highly enriched in functions related to TNF, IL-17, Rheumatoid arthritis and cytokine-cytokine receptor signaling pathways. Venn interaction of DEGs from the abovementioned five pathways showed that Nfkbia, Il1b, Il6, Nfkb1, Ccl2, Mmp3 were highly enriched DEGs. In addition, our research revealed that MRL suppresses NF-κB and modulates the Nrf2/HO-1/JNK signaling pathway activated by IL-1ß in chondrocytes. In vivo research shows that MRL slows the progression of OA in rats. Our findings imply that MRL might be a viable OA therapeutic choice.
Assuntos
Condrócitos , Interleucina-1beta , Lignanas , Osteoartrite , Ratos Sprague-Dawley , Animais , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Células Cultivadas , Interleucina-1beta/metabolismo , Masculino , Ratos , Lignanas/farmacologia , Lignanas/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , NF-kappa B/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Progressão da Doença , Fator de Necrose Tumoral alfa/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Modelos Animais de Doenças , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Transdução de Sinais/efeitos dos fármacos , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , HumanosRESUMO
The development of high-throughput technologies has enhanced our understanding of small non-coding RNAs (sncRNAs) and their crucial roles in various diseases, including atrial fibrillation (AF). This study aimed to systematically delineate sncRNA profiles in AF patients. PANDORA-sequencing was used to examine the sncRNA profiles of atrial appendage tissues from AF and non-AF patients. Differentially expressed sncRNAs were identified using the R package DEGseq 2 with a fold change >2 and p < 0.05. The target genes of the differentially expressed sncRNAs were predicted using MiRanda and RNAhybrid. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. In AF patients, the most abundant sncRNAs were ribosomal RNA-derived small RNAs (rsRNAs), followed by transfer RNA-derived small RNAs (tsRNAs), and microRNAs (miRNAs). Compared with non-AF patients, 656 rsRNAs, 45 miRNAs, 191 tsRNAs and 51 small nucleolar RNAs (snoRNAs) were differentially expressed in AF patients, whereas no significantly differentially expressed piwi-interacting RNAs were identified. Two out of three tsRNAs were confirmed to be upregulated in AF patients by quantitative reverse transcriptase polymerase chain reaction, and higher plasma levels of tsRNA 5006c-LysCTT were associated with a 2.55-fold increased risk of all-cause death in AF patients (hazard ratio: 2.55; 95% confidence interval, 1.56-4.17; p < 0.001). Combined with our previous transcriptome sequencing results, 32 miRNA, 31 snoRNA, 110 nucleus-encoded tsRNA, and 33 mitochondria-encoded tsRNA target genes were dysregulated in AF patients. GO and KEGG analyses revealed enrichment of differentially expressed sncRNA target genes in AF-related pathways, including the 'calcium signaling pathway' and 'adrenergic signaling in cardiomyocytes.' The dysregulated sncRNA profiles in AF patients suggest their potential regulatory roles in AF pathogenesis. Further research is needed to investigate the specific mechanisms of sncRNAs in the development of AF and to explore potential biomarkers for AF treatment and prognosis.
Assuntos
Apêndice Atrial , Fibrilação Atrial , Perfilação da Expressão Gênica , Pequeno RNA não Traduzido , Humanos , Fibrilação Atrial/genética , Pequeno RNA não Traduzido/genética , Apêndice Atrial/metabolismo , Masculino , Feminino , MicroRNAs/genética , Ontologia Genética , Idoso , Pessoa de Meia-Idade , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Regulação da Expressão Gênica , Transcriptoma/genética , Biologia Computacional/métodos , PrognósticoRESUMO
A novel Gram-staining-positive actinobacterium with antimicrobial activity, designated CFH 90308T, was isolated from the sediment of a salt lake in Yuncheng, Shanxi, south-western China. The isolate exhibited the highest 16S rRNA gene sequence similarities to Microbacterium yannicii G72T, Microbacterium hominis NBRC 15708T and Microbacterium xylanilyticum S3-ET (98.5, 98.4 and 98.2â%, respectively), and formed a separate clade with M. xylanilyticum S3-ET in phylogenetic trees. The strain grew at 15-40âºC, pH 6.0-8.0 and could tolerate NaCl up to a concentration of 15â% (w/v). The whole genome of strain CFH 90308T consisted of 4.33 Mbp and the DNA G+C content was 69.6 mol%. The acyl type of the peptidoglycan was glycolyl and the whole-cell sugars were galactose and mannose. The cell-wall peptidoglycan mainly contained alanine, glycine and lysine. The menaquinones of strain CFH 90308T were MK-12, MK-13 and MK-11. Strain CFH 90308T contained anteiso-C15:0, anteiso-C17:0, iso-C16:0 and iso-C15:0 as the predominant fatty acids. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between CFH 90308T and the other species of the genus Microbacterium were found to be low (ANIb <81.3â%, dDDH <25.6â%). The secondary metabolite produced by strain CFH 90308T showed antibacterial activities against Bacillus subtilis, Pseudomonas syringae, Aeromonas hydrophila and methicillin-resistant Staphylococcus aureus. Based on genotypic, phenotypic and chemotaxonomic results, the isolate is considered to represent a novel species of the genus Microbacterium, for which the name Microbacterium salsuginis sp. nov. is proposed. The type strain is CFH 90308T (=DSM 105964T=KCTC 49052T).
Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Microbacterium , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Vitamina K 2 , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , China , Vitamina K 2/análogos & derivados , Sedimentos Geológicos/microbiologia , Peptidoglicano , Lagos/microbiologia , Hibridização de Ácido Nucleico , Cloreto de Sódio/metabolismo , Genoma BacterianoRESUMO
Thermally-induced in-situ gelation of polymers and nanogels is of significant importance for injectable non-invasive tissue engineering and delivery systems of drug delivery system. In this study, we for the first time demonstrated that the interpenetrating (IPN) nanogel with two networks of poly (N-isopropylacrylamide) (PNIPAM) and poly (N-Acryloyl-l-phenylalanine) (PAphe) underwent a reversible temperature-triggered sol-gel transition and formed a structural color gel above the phase transition temperature (Tp). Dynamic light scattering (DLS) studies confirmed that the Tp of IPN nanogels are the same as that of PNIPAM, independent of Aphe content of the IPN nanogels at pH of 6.5 â¼ 7.4. The rheological and optical properties of IPN nanogels during sol-gel transition were studied by rheometer and optical fiber spectroscopy. The results showed that the gelation time of the hydrogel photonic crystals assembled by IPN nanogel was affected by temperature, PAphe composition, concentration, and sequence of interpenetration. As the temperature rose above the Tp, the Bragg reflection peak of IPN nanogels exhibited blue shift due to the shrinkage of IPN nanogels. In addition, these colored IPN nanogels demonstrated good injectability and had no obvious cytotoxicity. These IPN nanogels will open an avenue to the preparation and thermally-induced in-situ gelation of novel NIPAM-based nanogel system.
RESUMO
Plant invasions severely threaten natural ecosystems, and invasive plants often outcompete native plants across various ecosystems. Arbuscular mycorrhizal (AM) fungi, serving as beneficial microorganisms for host plants, can greatly influence the competitive outcomes of invasive plants against native plants. However, it remains unclear how AM fungi alter the competitive balance between native and invasive species. A competitive experiment was conducted using an invasive Eupatorium adenophorum paired with a native congener Eupatorium lindleyanum. Specifically, both species were inoculated with (M+) or without (M-) the fungus Glomus etunicatum under intraspecific (Intra-) and interspecific (Inter-) competition. Plant traits were measured and analyzed regarding the growth and nutrition of both species. The results exhibited that the AM fungus significantly increased the height, diameter, biomass, C, N, and P acquisition of both the invasive E. adenophorum and the native E. lindleyanum. The root mycorrhizal colonization and the mycorrhizal dependency of native E. lindleyanum were greater than those of invasive E. adenophorum. Under M+, the Inter-competition inhibited the growth and nutrition of invasive E. adenophorum compared to the Intra- competition. Further, native E. lindleyanum exhibited higher competitiveness than invasive E. adenophorum in growth and nutrition. Meanwhile, the AM fungus significantly improved the competitiveness of native E. lindleyanum over invasive E. adenophorum. In conclusion, AM fungus improved the competitive advantage of native E. lindleyanum over invasive E. adenophorum in growth and nutrition, potentially contributing to native species competitively resisting the invasion of exotic species. These findings emphasize the importance of AM fungi in helping native plants resist the invasion of exotic plants and further contribute to understanding plant invasion prevention mechanisms.
RESUMO
OBJECTIVE: Previous research on diagnostic assessment by superb microvascular imaging (SMI) were based on qualitative or semi-quantitative assessments of vascularity, which may be subjective and unrepeatable by different sonographers. This study aimed to evaluate diagnostic performance of SMI Image-pro Plus (IPP) based vascular index (VI) for malignant renal masses. METHOD: We retrospectively reviewed 222 masses in 214 patients who underwent SMI between August 2019 and August 2022 in our study. We evaluated the diagnostic performance of blood flow via Alder grade, VI based on both IPP and SMI. RESULTS: The kappa consistency of the Adler grade and VI for renal masses was classified among different observers were 0.765 and 0.824. The intra-observers correlation ecoefficiency (ICC) were 0.727 and 0.874. Benign renal masses were mainly Adler grade 0, grade I, and grade II, VI was 4.30 ± 4.27 (Range 0.98-16.42); while malignant masses were mainly Adler grade III, VI was 14.95 ± 10.94 (Range 0.79-56.89). VI was higher in malignant than benign masses (tâ¯=â¯15.638, P < 0.01). Among the malignant masses, the mean VI in clear cell renal cell carcinoma was higher than that in papillary renal cell carcinoma and chromophobe renal cell carcinoma (Fâ¯=â¯30.659, P < 0.01). The sensitivity, specificity and accuracy of SMI were 80.00%, 71.15%, and 78.64%, respectively. The sensitivity, specificity, and accuracy were 60.59%, 88.46%, and 80.18% by using a VI of 7.95 as the cutoff value to identify malignant lesions from benign masses yielded. VI had better diagnostic efficiency than ultrasonic characteristics and Adler grade in benign and malignant differential diagnosis (Zâ¯=â¯4.851, P < 0.01; Zâ¯=â¯2.732, P < 0.01). CONCLUSION: VI was higher in malignant than benign in renal masses. In malignant masses, VI in CCRCC was higher than that in papillary renal cell carcinoma and ChRCC. As a noninvasive examination, it had important clinical significance in the differential diagnosis of renal masses. VI from IPP may assist sonographer in distinguish renal malignances as a quantitative tool for vascularity.
Assuntos
Neoplasias Renais , Microvasos , Humanos , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/diagnóstico , Feminino , Masculino , Diagnóstico Diferencial , Estudos Retrospectivos , Pessoa de Meia-Idade , Microvasos/diagnóstico por imagem , Microvasos/patologia , Idoso , Adulto , Idoso de 80 Anos ou mais , Adulto JovemRESUMO
Blood vessels are essential for bone development and metabolism. Type H vessels in bone, named after their high expression of CD31 and Endomucin (Emcn), have recently been reported to locate mainly in the metaphysis, exhibit different molecular properties and couple osteogenesis and angiogenesis. A strong correlation between type H vessels and bone metabolism is now well-recognized. The crosstalk between type H vessels and osteoprogenitor cells is also involved in bone metabolism-related diseases such as osteoporosis, osteoarthritis, fracture healing and bone defects. Targeting the type H vessel formation may become a new approach for managing a variety of bone diseases. This review highlighted the roles of type H vessels in bone-related diseases and summarized the research attempts to develop targeted intervention, which will help us gain a better understanding of their potential value in clinical application.
Assuntos
Doenças Ósseas Metabólicas , Osteoporose , Humanos , Osteogênese/genética , Osso e Ossos/metabolismo , Osteoporose/metabolismo , Consolidação da Fratura , Neovascularização FisiológicaRESUMO
ß-Tertiary amino acid derivatives constitute one of the most frequently occurring units in natural products and bioactive molecules. However, the efficient asymmetric synthesis of this motif still remains a significant challenge. Herein, we disclose a cobalt-catalyzed enantioselective reductive addition reaction of ketimine using α-chloro carbonyl compound as a radical precursor, providing expedient access to a diverse array of enantioenriched ß-quaternary amino acid analogues. This protocol exhibits outstanding enantioselectivity and broad substrate scope with excellent functional group tolerance. Preliminary mechanism studies rule out the possibility of Reformatsky-type addition and confirm the involvement of radical species in stereoselective addition process. The synthetic utility has been demonstrated through the rapid assembly of iterative amino acid units and oligopeptide, showcasing its versatile platform for late-stage modification of drug candidates.
RESUMO
Chromium-catalyzed enantioselective Nozaki-Hiyama-Kishi (NHK) reaction represents one of the most powerful approaches for the formation of chiral carbon-heteroatom bond. However, the construction of sterically encumbered tetrasubstituted stereocenter through NHK reaction still posts a significant challenge. Herein, we disclose a cobalt-catalyzed aza-NHK reaction of ketimine with alkenyl halide to provide a convenient synthetic approach for the manufacture of enantioenriched tetrasubstituted α-vinylic amino acid. This protocol exhibits excellent functional group tolerance with excellent 99 % ee in most cases. Additionally, this asymmetric reductive method is also applicable to the aldimine to access the trisubstituted stereogenic centers.
RESUMO
Unnatural chiral α-tertiary amino acids containing two different carbon-based substituents at the α-carbon centre are widespread in biologically active molecules. This sterically rigid scaffold is becoming a growing research interest in drug discovery. However, a robust protocol for chiral α-tertiary amino acid synthesis remains scarce due to the challenge of stereoselectively constructing sterically encumbered tetrasubstituted stereogenic carbon centres. Herein we report a cobalt-catalysed enantioselective aza-Barbier reaction of ketimines with various unactivated alkyl halides, including alkyl iodides, alkyl bromides and alkyl chlorides, enabling the formation of chiral α-tertiary amino esters with a high level of enantioselectivity and excellent functional group tolerance. Primary, secondary and tertiary organoelectrophiles are all tolerated in this asymmetric reductive addition protocol, which provides a complementary method for the well-exploited enantioselective nucleophilic addition with moisture- and air-sensitive organometallic reagents. Moreover, the three-component transformation of α-ketoester, amine and alkyl halide represents a formal asymmetric deoxygenative alkylamination of the carbonyl group.
RESUMO
BACKGROUND: The epithelial-mesenchymal transition (EMT) plays a vital role in the progression of lung adenocarcinoma (LUAD). Long non-coding RNAs (lncRNAs) participate in the EMT process as an important regulatory factor and have the potential to serve as prognostic biomarkers. We aimed to construct a novel lncRNA prognostic signature for LUAD based on EMT-related lncRNAs, identify EMT-related hub lncRNA, and investigate its biological functions. METHODS: RNA-seq data, clinical and survival information were obtained from The Cancer Genome Atlas database. The EMT-related lncRNA prognostic signature (EMTscore) was constructed using the Least Absolute Shrinkage and Selection Operator Cox regression analysis. The efficiency of EMTscore in predicting the prognosis of LUAD was evaluated through the area under the time-dependent receiver operating characteristic (ROC) curves. The hub lncRNA of the prognostic signature was selected using a co-expression network map, and its effects on cell proliferation and metastasis were explored by in vitro experiments. RESULTS: We constructed a prognostic signature (EMTscore) containing 8 tumor-high expressed lncRNAs. The EMTscore performed well in predicting overall survival rates with AUC values of 0.708 at 5 years in the training set. EMTscore could independently predict the survival of LUAD, with HR = 4.011 (95% CI 2.430-6.622) in the multivariate Cox regression. Importantly, we identified LINC01615 as the hub lncRNA in the EMTscore and revealed that LINC01615 enhanced the proliferation, migration, and EMT of lung cancer cells. CONCLUSIONS: A new EMT-related lncRNA prognostic signature named EMTscore was developed, and LINC01615 was identified as the hub lncRNA of EMTscore. The hub lncRNA LINC01615 had an oncogenic biological function in LUAD.
Assuntos
Adenocarcinoma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Prognóstico , Transição Epitelial-Mesenquimal/genética , Proliferação de Células/genética , Adenocarcinoma/genéticaRESUMO
This study aimed to explore the function of nucleolar protein interacting with the FHA domain of MKI67 (NIFK) on colorectal cancer (CRC) and its associated molecular mechanisms. NIFK was upregulated in CRC tissues and cells. NIFK silencing resulted in reduced cell growth and metastasis, as well as in promoted apoptosis in CRC cells. Moreover, NIFK silencing was also confirmed to inhibit lipid accumulation and decrease fatty acid synthesis via downregulating lipogenic enzymes in CRC cells. Gene set enrichment analysis and western blot co-verified that NIFK silencing inhibited MYC proto-oncogene, bHLH transcription factor (MYC) pathway in CRC cells. In addition, we also revealed that NIFK silencing function on cell growth, apoptosis, metastasis, and fatty acid metabolism in CRC might be cancelled after c-MYC overexpression. Silencing NIFK could inhibit cell growth and metastasis, and promoted apoptosis, as well as regulated fatty acid metabolism by inhibiting MYC pathway in CRC.
Assuntos
Neoplasias Colorretais , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Ácidos Graxos , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genéticaRESUMO
Osteoarthritis (OA) is a common musculoskeletal disorder that impairs function and reduces the quality of life. Extracellular matrix (ECM) degradation and inflammatory mechanisms are crucial to the progression of OA. In this study, we aimed to investigate the anti-inflammatory activity, anti-ECM degradation property, and glucose transport capacity of quercitrin (QCT) on IL-1ß-treated rat primary chondrocytes. Rat primary chondrocytes were treated with IL-1ß to simulate inflammatory environmental conditions and OA in vitro. We examined the effects of QCT at concentrations ranging from 0 to 200 µM on the viability of rat chondrocytes and selected 5 µM for further study. Using qRT-PCR, immunofluorescent, immunocytochemistry, and western blotting techniques, we identified the potential molecular mechanisms and signaling pathways that are responsible for these effects. We established an OA rat model through anterior cruciate ligament transection (ACLT). The animals were then periodically injected with QCT into the knee articular cavity. Our in vivo and in vitro study showed that QCT could inhibit IL-1ß-activated inflammation and ECM degradation in chondrocyte. Furthermore, QCT could inhibit the NF-κB signal pathway and enhance glucose transport capacity in the IL-1ß-stimulated chondrocytes. In vivo study proved that QCT attenuates OA progression in rats. Overall, QCT inhibited the activation of NF-κB and enhanced glucose transport capacity to alleviate the progression of OA.
Assuntos
NF-kappa B , Osteoartrite , Ratos , Animais , NF-kappa B/metabolismo , Qualidade de Vida , Células Cultivadas , Transdução de Sinais , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Inflamação/metabolismo , Condrócitos/metabolismo , Glucose/farmacologia , Interleucina-1beta/farmacologia , Interleucina-1beta/metabolismoRESUMO
When exposed to various microenvironmental stimuli, macrophages are highly plastic and primarily polarized into the pro-inflammatory M1-type and the anti-inflammatory M2-type, both of which perform almost entirely opposing functions. Due to this characteristic, macrophages perform different functions at different stages of immunity and inflammation. Inflammatory immune skin diseases usually show an imbalance in the M1/M2 macrophage ratio, and altering the macrophage polarization phenotype can either make the symptoms worse or better. Therefore, this review presents the mechanisms of macrophage polarization, inflammation-related signaling pathways (JAK/STAT, NF-κB, and PI3K/Akt), and the role of both in inflammatory immune skin diseases (psoriasis, AD, SLE, BD, etc.) to provide new directions for basic and clinical research of related diseases.
RESUMO
Background: Personal protective equipment (PPE) helps protect healthcare workers (HCWs) from infection and prevents cross-contamination. Knowledge of the contamination dynamics of PPE during the management of COVID-19 patients in a makeshift hospital is limited. Aim: To describe the rate of SARS-CoV-2 contamination in PPE and to assess the change of contamination at different time points. Methods: HCWs were followed up for up to 4 hours with hourly collection of swab samples from PPE surfaces in a makeshift COVID-19 hospital setting. Swabs were tested using quantitative reverse transcription polymerase chain reaction (RT-qPCR) for SARS-CoV-2 RNA. Results: SARS-CoV-2 was detected on 50.9% of the 1620 swabbed samples from 9 different sites of full-body PPE worn by HCWs. The proportion of sites contaminated with SARS-CoV-2 RNA varied from 10.6% to 95.6%. Viral RNA was most frequently detected from the sole of the outer foot cover (95.6%) and least frequently on the face shield (10.6%). The median Ct values among positive samples were 34.20 (IQR, 32.61-35.22) and 34.05 (IQR, 32.20-35.39) for ORF1ab and N genes, respectively. The highest rate of contamination with SARS-CoV-2 RNA for the PPE swab samples was found after 3 hours of use. The positive rate of outer surface of HEPA filters from air supply device was 82.1% during the full capacity period of the makeshift hospital. Conclusion: A higher rate of contamination was identified at 3 hours after the entrance to the COVID-19 patient care area. Virus-containing aerosols were trapped in the HEPA filter of air supply equipment, representing a potential protective factor against infection to HCWs.
RESUMO
Background: The role of irreversible airway inflammatory damage in chronic obstructive pulmonary disease (COPD) progression is evident. Autophagy is an essential process in the cellular material metabolic cycle, and a family of resistant vegetative molecules may be involved in the COPD autophagic process. In this study, we investigated the mechanism of resistin-like molecule ß (RELMß) in COPD smoking-induced autophagy. Methods: Firstly, the expression differences of RELMß and autophagy markers between COPD and control groups were analyzed in the Gene Expression Omnibus (GEO) datasets and clinical specimens. Secondly, in vitro and in vivo experiments were conducted using immunoblotting, immunofluorescence, immunohistochemistry, and other methods to investigate the mechanism by which RELMß promotes airway inflammation through autophagy in a cigarette smoke extract-induced 16HBE cell inflammation model and a cigarette smoke-induced COPD-like mouse model. In addition, immunoprecipitation was used to analyze the binding of RELMß to the membrane protein TLR4. Results: The expression of RELMß and autophagy genes p62 and LC3B in lung tissue of COPD patients was significantly increased. RELMß can mediate the activation of autophagy in 16HBE cells, and through autophagy, it increases the expression of inflammatory cytokines in a cigarette smoke extract-induced 16HBE cell inflammation model. RELMß promotes cigarette smoke-induced COPD-like mouse airway inflammation through autophagy, and RELMß can mediate signal transduction through the cell membrane receptor TLR4. Conclusion: The RELMß binds to TLR4 to encourage signal transduction and that RELMß can promote inflammation in smoky COPD lungs through autophagy.