Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e25874, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375242

RESUMO

In this work, we present a novel stretchable bimodal sensor that can simultaneously detect temperature and humidity changes based on poly-hydroxyethyl acrylate (PHEA) elastomer infused with 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) ionic liquid. The sensor exhibits high transparency, stability, and biocompatibility, as well as excellent mechanical and sensing properties. The sensor can achieve a maximum strain of 761%, a sensitivity of 4.5%/°C at room temperature, a detection range from -35 to 120 °C, and a response time of 10 ms. The sensor is able to provide acute response to movement of human hand at close range and can detect temperature changes as small as 0.004 °C in the range of 20-30 °C. The sensor also responds to humidity change, showing a high sensitivity to humidity change of 4.4%/RH% under the temperature of 30 °C. The sensor can be used for various applications in wearable electronics, human-machine interfaces, and soft robotics.

2.
ACS Appl Mater Interfaces ; 13(23): 27278-27283, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34086457

RESUMO

We demonstrate a fabrication procedure of hybrid devices that consist of reduced graphene oxide films supported by porous polymer membranes that host ionic solutions. We find that we can control the thermal radiation from the surface of reduced graphene oxide through a process of electrically driven reversible ionic intercalation. Through a comparative analysis of the structural, chemical, and optical properties of our reduced graphene oxide films, we identify that the dominant mechanism leading to the intercalation-induced reduction of light emission is Pauli blocking of the interband recombination of charge carriers. We inspect the capabilities of our devices to act as a platform for the electrical control of mid-infrared photonics by observing a bias-induced reduction of apparent temperature of hot surfaces visualized through an infrared thermal camera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA