Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37145142

RESUMO

Effective depletion of immune suppressive regulatory T cells (Tregs) in the tumor microenvironment without triggering systemic autoimmunity is an important strategy for cancer immunotherapy. Modified vaccinia virus Ankara (MVA) is a highly attenuated, non-replicative vaccinia virus with a long history of human use. Here, we report rational engineering of an immune-activating recombinant MVA (rMVA, MVA∆E5R-Flt3L-OX40L) with deletion of the vaccinia E5R gene (encoding an inhibitor of the DNA sensor cyclic GMP-AMP synthase, cGAS) and expression of two membrane-anchored transgenes, Flt3L and OX40L. Intratumoral (IT) delivery of rMVA (MVA∆E5R-Flt3L-OX40L) generates potent antitumor immunity, dependent on CD8+ T cells, the cGAS/STING-mediated cytosolic DNA-sensing pathway, and type I IFN signaling. Remarkably, IT rMVA (MVA∆E5R-Flt3L-OX40L) depletes OX40hi regulatory T cells via OX40L/OX40 interaction and IFNAR signaling. Single-cell RNA-seq analyses of tumors treated with rMVA showed the depletion of OX40hiCCR8hi Tregs and expansion of IFN-responsive Tregs. Taken together, our study provides a proof-of-concept for depleting and reprogramming intratumoral Tregs via an immune-activating rMVA.


Assuntos
Neoplasias , Vaccinia virus , Humanos , Vaccinia virus/genética , Linfócitos T CD8-Positivos , Nucleotidiltransferases/genética , Microambiente Tumoral
2.
Nat Commun ; 14(1): 2898, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217469

RESUMO

The DNA sensor cyclic GMP-AMP synthase (cGAS) is critical in host antiviral immunity. Vaccinia virus (VACV) is a large cytoplasmic DNA virus that belongs to the poxvirus family. How vaccinia virus antagonizes the cGAS-mediated cytosolic DNA-sensing pathway is not well understood. In this study, we screened 80 vaccinia genes to identify potential viral inhibitors of the cGAS/Stimulator of interferon gene (STING) pathway. We discovered that vaccinia E5 is a virulence factor and a major inhibitor of cGAS. E5 is responsible for abolishing cGAMP production during vaccinia virus (Western Reserve strain) infection of dendritic cells. E5 localizes to the cytoplasm and nucleus of infected cells. Cytosolic E5 triggers ubiquitination of cGAS and proteasome-dependent degradation via interacting with cGAS. Deleting the E5R gene from the Modified vaccinia virus Ankara (MVA) genome strongly induces type I IFN production by dendritic cells (DCs) and promotes DC maturation, and thereby improves antigen-specific T cell responses.


Assuntos
Células Dendríticas , Nucleotidiltransferases , Vaccinia virus , Proteínas Virais , Camundongos Endogâmicos C57BL , Animais , Camundongos , Camundongos Knockout , Feminino , Nucleotidiltransferases/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Vaccinia virus/patogenicidade , Fatores de Virulência/imunologia , Ubiquitinação , Proteínas Virais/genética , Proteínas Virais/imunologia , Complexo de Endopeptidases do Proteassoma , Interferon Tipo I/imunologia , Células HEK293 , Humanos , Proteínas de Membrana/imunologia , Linfócitos T/imunologia
3.
Am J Surg Pathol ; 47(1): 65-73, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35968961

RESUMO

GLI1 encodes a transcription factor that targets cell cycle regulators affecting stem cell proliferation. GLI1 gene fusions were initially described in pericytomas with a t[7;12] translocation and more recently in gastric plexiform fibromyxomas and gastroblastomas. This study describes the clinicopathologic, immunohistochemical, and molecular features of three intestinal-based neoplasms harboring GLI1 gene fusions. We studied three unique mesenchymal small bowel tumors. Paraffin embedded tumor tissues from these cases and 62 additional tumor samples that included a plexiform fibromyxoma were sequenced using a targeted RNAseq method to detect fusion events. The study patients included two women and one man who were 52, 80, and 22 years of age at the time of diagnosis. The tumors involved the submucosa and muscularis propria of the duodenum, jejunum, and ileum. All 3 tumors contained a proliferation of monotonous oval or spindle cells with scattered, somewhat dilated vessels. Two cases showed epithelioid structures such as glands, tubules, or nests. Immunohistochemical analysis revealed cytokeratin expression in the epithelioid components of both tumors displaying these features, and variable numbers of mesenchymal cells. Diffuse CD56 positivity was seen in the mesenchymal component of 2 tumors and desmin and smooth muscle actin staining in the other tumor. Immunostains for S-100 protein, DOG-1, and CD117 were negative in all cases. GLI1 fusions with different partner genes were detected in all tumors, and in the plexiform fibromyxoma, used as a control. Validation by fluorescence in situ hybridization was performed. None of the tumors have recurred or metastasize after surgery. We describe novel GLI1 fusions in 3 mesenchymal neoplasms of the small intestine, including 2 with biphenotypic features. Thus far, all cases have pursued indolent clinical courses. We propose the term " GLI1 -rearranged enteric tumor" to encompass this group of unique neoplasms of the small intestine that harbor GLI1 gene fusions and expand the spectrum of gastrointestinal neoplasms with these alterations.


Assuntos
Fibroma , Neoplasias Gastrointestinais , Neoplasias de Tecidos Moles , Feminino , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Fibroma/patologia , Fusão Gênica , Hibridização in Situ Fluorescente , Intestino Delgado/patologia , Recidiva Local de Neoplasia , Proteínas S100 , Neoplasias de Tecidos Moles/patologia , Proteína GLI1 em Dedos de Zinco/genética , Masculino , Adulto Jovem , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais
4.
iScience ; 25(4): 104153, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35434558

RESUMO

The sinoatrial node (SAN) is the primary pacemaker of the heart. The human SAN is poorly understood due to limited primary tissue access and limitations in robust in vitro derivation methods. We developed a dual SHOX2:GFP; MYH6:mCherry knockin human embryonic stem cell (hESC) reporter line, which allows the identification and purification of SAN-like cells. Using this line, we performed several rounds of chemical screens and developed an efficient strategy to generate and purify hESC-derived SAN-like cells (hESC-SAN). The derived hESC-SAN cells display molecular and electrophysiological characteristics of bona fide nodal cells, which allowed exploration of their transcriptional profile at single-cell level. In sum, our dual reporter system facilitated an effective strategy for deriving human SAN-like cells, which can potentially be used for future disease modeling and drug discovery.

5.
Cell Stem Cell ; 29(4): 593-609.e7, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35364013

RESUMO

The liver vascular network is patterned by sinusoidal and hepatocyte co-zonation. How intra-liver vessels acquire their hierarchical specialized functions is unknown. We study heterogeneity of hepatic vascular cells during mouse development through functional and single-cell RNA-sequencing. The acquisition of sinusoidal endothelial cell identity is initiated during early development and completed postnatally, originating from a pool of undifferentiated vascular progenitors at E12. The peri-natal induction of the transcription factor c-Maf is a critical switch for the sinusoidal identity determination. Endothelium-restricted deletion of c-Maf disrupts liver sinusoidal development, aberrantly expands postnatal liver hematopoiesis, promotes excessive postnatal sinusoidal proliferation, and aggravates liver pro-fibrotic sensitivity to chemical insult. Enforced c-Maf overexpression in generic human endothelial cells switches on a liver sinusoidal transcriptional program that maintains hepatocyte function. c-Maf represents an inducible intra-organotypic and niche-responsive molecular determinant of hepatic sinusoidal cell identity and lays the foundation for the strategies for vasculature-driven liver repair.


Assuntos
Capilares , Células Endoteliais , Animais , Endotélio , Fígado/patologia , Cirrose Hepática/patologia , Regeneração Hepática , Camundongos , Proteínas Proto-Oncogênicas c-maf
6.
Nat Cardiovasc Res ; 1: 882-899, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36713285

RESUMO

Current dogma dictates that during adulthood, endothelial cells (ECs) are locked in an immutable stable homeostatic state. By contrast, herein we show that maintenance of EC fate and function are linked and active processes, which depend on the constitutive cooperativity of only two ETS-transcription factors (TFs) ERG and Fli1. While deletion of either Fli1 or ERG manifest subtle vascular dysfunction, their combined genetic deletion in adult EC results in acute vasculopathy and multiorgan failure, due to loss of EC fate and integrity, hyperinflammation, and spontaneous thrombosis, leading to death. ERG and Fli1 co-deficiency cause rapid transcriptional silencing of pan- and organotypic vascular core genes, with dysregulation of inflammation and coagulation pathways. Vascular hyperinflammation leads to impaired hematopoiesis with myeloid skewing. Accordingly, enforced ERG and FLI1 expression in adult human mesenchymal stromal cells activates vascular programs and functionality enabling engraftment of perfusable vascular network. GWAS-analysis identified vascular diseases are associated with FLI1/Erg mutations. Constitutive expression of ERG and Fli1 uphold EC fate, physiological function, and resilience in adult vasculature; while their functional loss can contribute to systemic human diseases.

7.
Transl Oncol ; 14(1): 100944, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33190043

RESUMO

BACKGROUND: Frequency of clinically relevant mutations in solid tumors by targeted and whole-exome sequencing is ∼30%. Transcriptome analysis complements detection of actionable gene fusions in advanced cancer patients. Goal of this study was to determine the added value of anchored multiplex PCR (AMP)-based next-generation sequencing (NGS) assay to identify further potential drug targets, when coupled with whole-exome sequencing (WES). METHODS: Selected series of fifty-six samples from 55 patients enrolled in our precision medicine study were interrogated by WES and AMP-based NGS. RNA-seq was performed in 19 cases. Clinically relevant and actionable alterations detected by three methods were integrated and analyzed. RESULTS: AMP-based NGS detected 48 fusions in 31 samples (55.4%); 31.25% (15/48) were classified as targetable based on published literature. WES revealed 29 samples (51.8%) harbored targetable alterations. TMB-high and MSI-high status were observed in 12.7% and 1.8% of cases. RNA-seq from 19 samples identified 8 targetable fusions (42.1%), also captured by AMP-based NGS. When number of actionable fusions detected by AMP-based NGS were added to WES targetable alterations, 66.1% of samples had potential drug targets. When both WES and RNA-seq were analyzed, 57.8% of samples had targetable alterations. CONCLUSIONS: This study highlights importance of an integrative genomic approach for precision oncology, including use of different NGS platforms with complementary features. Integrating RNA data (whole transcriptome or AMP-based NGS) significantly enhances detection of potential targets in cancer patients. In absence of fresh frozen tissue, AMP-based NGS is a robust method to detect actionable fusions using low-input RNA from archival tissue.

8.
Nat Commun ; 9(1): 4815, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446643

RESUMO

Common disorders, including diabetes and Parkinson's disease, are caused by a combination of environmental factors and genetic susceptibility. However, defining the mechanisms underlying gene-environment interactions has been challenging due to the lack of a suitable experimental platform. Using pancreatic ß-like cells derived from human pluripotent stem cells (hPSCs), we discovered that a commonly used pesticide, propargite, induces pancreatic ß-cell death, a pathological hallmark of diabetes. Screening a panel of diverse hPSC-derived cell types we extended this observation to a similar susceptibility in midbrain dopamine neurons, a cell type affected in Parkinson's disease. We assessed gene-environment interactions using isogenic hPSC lines for genetic variants associated with diabetes and Parkinson's disease. We found GSTT1-/- pancreatic ß-like cells and dopamine neurons were both hypersensitive to propargite-induced cell death. Our study identifies an environmental chemical that contributes to human ß-cell and dopamine neuron loss and validates a novel hPSC-based platform for determining gene-environment interactions.


Assuntos
Cicloexanos/toxicidade , Diabetes Mellitus/induzido quimicamente , Neurônios Dopaminérgicos/efeitos dos fármacos , Interação Gene-Ambiente , Células Secretoras de Insulina/efeitos dos fármacos , Praguicidas/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Diferenciação Celular , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/enzimologia , Glutationa Transferase/deficiência , Glutationa Transferase/genética , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/enzimologia , Mesencéfalo/citologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/enzimologia , Camundongos , Modelos Biológicos , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/enzimologia
9.
Nat Commun ; 9(1): 2681, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29992946

RESUMO

GLIS3 mutations are associated with type 1, type 2, and neonatal diabetes, reflecting a key function for this gene in pancreatic ß-cell biology. Previous attempts to recapitulate disease-relevant phenotypes in GLIS3-/- ß-like cells have been unsuccessful. Here, we develop a "minimal component" protocol to generate late-stage pancreatic progenitors (PP2) that differentiate to mono-hormonal glucose-responding ß-like (PP2-ß) cells. Using this differentiation platform, we discover that GLIS3-/- hESCs show impaired differentiation, with significant death of PP2 and PP2-ß cells, without impacting the total endocrine pool. Furthermore, we perform a high-content chemical screen and identify a drug candidate that rescues mutant GLIS3-associated ß-cell death both in vitro and in vivo. Finally, we discovered that loss of GLIS3 causes ß-cell death, by activating the TGFß pathway. This study establishes an optimized directed differentiation protocol for modeling human ß-cell disease and identifies a drug candidate for treating a broad range of GLIS3-associated diabetic patients.


Assuntos
Diabetes Mellitus/prevenção & controle , Descoberta de Drogas/métodos , Hipoglicemiantes/farmacologia , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Proteínas de Ligação a DNA , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Perfilação da Expressão Gênica , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos SCID , Mutação , Pirazóis/farmacologia , Quinolinas/farmacologia , Proteínas Repressoras , Transativadores , Fatores de Transcrição/metabolismo , Transplante Heterólogo
10.
Stem Cell Res ; 30: 12-21, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29777802

RESUMO

Interest in human brown fat as a novel therapeutic target to tackle the growing obesity and diabetes epidemic has increased dramatically in recent years. While much insight into brown fat biology has been gained from murine cell lines and models, few resources are available to study human brown fat in vitro, which makes the need for new ways to derive and study human brown adipocytes imperative. Human ES cell based reporter systems present an excellent tool to identify, mark, and purify cell populations of choice. In this study, we detail the derivation and characterization of a novel human ES UCP1 reporter cell line that marks UCP1 positive adipocytes in vitro. We targeted a mCherry reporter to the UCP1 stop codon via CRISPR-Cas9 based gene targeting. The brown adipocytes derived from reporter cells express UCP1, display high mitochondrial content, multi-locular lipid morphology, and exhibit functional properties such as lipolysis. The mCherry positive cells purified after cell sorting show elevated expression of brown fat marker genes and a high similarity to isolated human brown fat via RNA-seq analysis. Finally, we demonstrate the utility of this reporter to real time monitor UCP1 expression upon stimulation. This reporter cell line thus presents new opportunities to study human brown fat biology by enabling future work to understand early human brown fat development, perform disease modeling, and facilitate drug screening.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Mitocôndrias/metabolismo , Obesidade/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Diferenciação Celular , Linhagem Celular , Humanos
12.
Nat Med ; 23(7): 878-884, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28628110

RESUMO

With the goal of modeling human disease of the large intestine, we sought to develop an effective protocol for deriving colonic organoids (COs) from differentiated human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs). Extensive gene and immunohistochemical profiling confirmed that the derived COs represent colon rather than small intestine, containing stem cells, transit-amplifying cells, and the expected spectrum of differentiated cells, including goblet and endocrine cells. We applied this strategy to iPSCs derived from patients with familial adenomatous polyposis (FAP-iPSCs) harboring germline mutations in the WNT-signaling-pathway-regulator gene encoding APC, and we generated COs that exhibit enhanced WNT activity and increased epithelial cell proliferation, which we used as a platform for drug testing. Two potential compounds, XAV939 and rapamycin, decreased proliferation in FAP-COs, but also affected cell proliferation in wild-type COs, which thus limits their therapeutic application. By contrast, we found that geneticin, a ribosome-binding antibiotic with translational 'read-through' activity, efficiently targeted abnormal WNT activity and restored normal proliferation specifically in APC-mutant FAP-COs. These studies provide an efficient strategy for deriving human COs, which can be used in disease modeling and drug discovery for colorectal disease.


Assuntos
Adenoma/genética , Polipose Adenomatosa do Colo/genética , Antibióticos Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Colo/efeitos dos fármacos , Neoplasias Colorretais/genética , Células-Tronco Embrionárias Humanas , Organoides/efeitos dos fármacos , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Western Blotting , Diferenciação Celular , Colo/citologia , Colo/metabolismo , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Células Enteroendócrinas/citologia , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Gentamicinas/farmacologia , Mutação em Linhagem Germinativa , Células Caliciformes/citologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas , Microscopia Confocal , Mutação , Organoides/citologia , Organoides/metabolismo , Organoides/patologia , Reação em Cadeia da Polimerase em Tempo Real , Sirolimo/farmacologia , Via de Sinalização Wnt
13.
Cell Rep ; 19(8): 1512-1521, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28538172

RESUMO

Genome-wide association studies (GWASs) have identified many disease-associated variant alleles, but understanding whether and how different genes/loci interact requires a platform for probing how the variant alleles act mechanistically. Isogenic mutant human embryonic stem cells (hESCs) provide an unlimited resource to derive and study human disease-relevant cells. Here, we focused on CDKAL1, linked by GWASs to diabetes. Through transcript profiling, we find that expression of the metallothionein (MT) gene family, also linked by GWASs to diabetes, is significantly downregulated in CDKAL1-/- cells that have been differentiated to insulin-expressing pancreatic beta-like cells. Forced MT1E expression rescues both hypersensitivity of CDKAL1 mutant cells to glycolipotoxicity and pancreatic beta-cell dysfunction in vitro and in vivo. MT1E functions at least in part through relief of ER stress. This study establishes an isogenic hESC-based platform to study the interaction of GWAS-identified diabetes gene variants and illuminate the molecular network impacting disease progression.


Assuntos
Diabetes Mellitus/genética , Predisposição Genética para Doença , Células-Tronco Embrionárias Humanas/metabolismo , Metalotioneína/genética , tRNA Metiltransferases/genética , Diabetes Mellitus/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Glucose/toxicidade , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Lipídeos/toxicidade , Chaperonas Moleculares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , tRNA Metiltransferases/deficiência , tRNA Metiltransferases/metabolismo
14.
Cell Stem Cell ; 19(3): 326-40, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27524441

RESUMO

Genome-wide association studies (GWASs) have increased our knowledge of loci associated with a range of human diseases. However, applying such findings to elucidate pathophysiology and promote drug discovery remains challenging. Here, we created isogenic human ESCs (hESCs) with mutations in GWAS-identified susceptibility genes for type 2 diabetes. In pancreatic beta-like cells differentiated from these lines, we found that mutations in CDKAL1, KCNQ1, and KCNJ11 led to impaired glucose secretion in vitro and in vivo, coinciding with defective glucose homeostasis. CDKAL1 mutant insulin+ cells were also hypersensitive to glucolipotoxicity. A high-content chemical screen identified a candidate drug that rescued CDKAL1-specific defects in vitro and in vivo by inhibiting the FOS/JUN pathway. Our approach of a proof-of-principle platform, which uses isogenic hESCs for functional evaluation of GWAS-identified loci and identification of a drug candidate that rescues gene-specific defects, paves the way for precision therapy of metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2/genética , Descoberta de Drogas , Estudo de Associação Genômica Ampla , Células-Tronco Embrionárias Humanas/metabolismo , Alelos , Animais , Benzofenonas/farmacologia , Biomarcadores/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular , Diabetes Mellitus Tipo 2/patologia , Marcação de Genes , Glucose/toxicidade , Proteínas de Fluorescência Verde/metabolismo , Homeostase/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Isoxazóis/farmacologia , Canal de Potássio KCNQ1/genética , Lipídeos/toxicidade , Camundongos , Mutação/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Transdução de Sinais/efeitos dos fármacos , tRNA Metiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA