Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 44(7): 3637-3648, 2023 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-37438263

RESUMO

Nowadays, China is faced with two strategic tasks:improving ecological environmental quality and realizing carbon neutrality and carbon peaking. Synergy to reduce pollution and carbon emissions has become an inevitable choice for the comprehensive green transition of economic and social development in China. The electric power sector will play an important role in the transition process. Based on different power demand scenarios, a multi-objective model was constructed to achieve carbon peaking and carbon neutrality at a low cost, and the optimal path scheme of carbon emission reduction synergy was obtained. The results showed that under the premise of achieving carbon peaking and carbon neutrality as scheduled, pollution reduction and carbon reduction had good synergies, and their synergistic control could effectively facilitate the realization of the low-carbon transition. Optimizing the power generation structure of the electric power sector was the key measure to achieving the synergistic effect of pollution reduction and carbon reduction. During the study period, the proportion of thermal power decreased continuously, and the proportion of clean power exceeded 92.5%. The emissions of carbon dioxide and major air pollutants were significantly different under different power demands. Carbon dioxide emissions were most affected by power demand. The peak carbon dioxide emissions under low power demand, medium power demand, and high power demand were 9.416 billion, 10.409 billion, and 10.746 billion t, respectively. The emissions of sulfur dioxide, nitrogen oxide, and particulate matter also showed an increasing trend in the low power demand, medium power demand, and high power demand scenarios. The increase in power demand only increased the pressure of power generation structure adjustment within the electric power sector, without affecting the output and activity level of other sectors, that is, the pressure of emission reduction in the electric power sector caused by power demand did not show the trend of transmission between sectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA