Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Biol Psychiatry ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38061467

RESUMO

BACKGROUND: Polymorphisms in the gene encoding for metabotropic glutamate receptor 3 (mGlu3) are associated with an increased likelihood of schizophrenia diagnosis and can predict improvements in negative symptoms following treatment with antipsychotics. However, the mechanisms by which mGlu3 can regulate brain circuits involved in schizophrenia pathophysiology are not clear. METHODS: We employed selective pharmacological tools and a variety of approaches including whole-cell patch-clamp electrophysiology, slice optogenetics, and fiber photometry to investigate the effects of mGlu3 activation on phencyclidine (PCP)-induced impairments in thalamo-accumbal transmission and sociability deficits. A chemogenetic approach was used to evaluate the role of thalamo-accumbal transmission in PCP-induced sociability deficits. RESULTS: We first established that PCP treatment augmented excitatory transmission onto dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) in the nucleus accumbens (NAc) and induced sociability deficits. Our studies revealed a selective increase in glutamatergic synaptic transmission from thalamic afferents to D1-MSNs in the NAc shell. Chemogenetic silencing of thalamo-accumbal inputs rescued PCP-induced sociability deficits. Pharmacological activation of mGlu3 normalized PCP-induced impairments in thalamo-accumbal transmission and sociability deficits. Mechanistic studies revealed that mGlu3 activation induced robust long-term depression at synapses from the thalamic projections onto D1-MSNs in the NAc shell. CONCLUSIONS: These data demonstrate that activation of mGlu3 decreases thalamo-accumbal transmission and thereby rescues sociability deficits in mouse modeling schizophrenia-like symptoms. These findings provide novel insights into the NAc-specific mechanisms and suggest that agents modulating glutamatergic signaling in the NAc may provide a promising approach for treating negative symptoms in schizophrenia.

2.
J Biol Chem ; 298(10): 102458, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063995

RESUMO

Glutamate acts at eight metabotropic glutamate (mGlu) receptor subtypes expressed in a partially overlapping fashion in distinct brain circuits. Recent evidence indicates that specific mGlu receptor protomers can heterodimerize and that these heterodimers can exhibit different pharmacology when compared to their homodimeric counterparts. Group III mGlu agonist-induced suppression of evoked excitatory potentials and induction of long-term potentiation at Schaffer collateral-CA1 (SC-CA1) synapses in the rodent hippocampus can be blocked by the selective mGlu7 negative allosteric modulator (NAM), ADX71743. Curiously, a different mGlu7 NAM, 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazonolo[4,5-c]pyridin-4(5H)-one, failed to block these responses in brain slices despite its robust activity at mGlu7 homodimers in vitro. We hypothesized that this might result from heterodimerization of mGlu7 with another mGlu receptor protomer and focused on mGlu8 as a candidate given the reported effects of mGlu8-targeted compounds in the hippocampus. Here, we used complemented donor acceptor-resonance energy transfer to study mGlu7/8 heterodimer activation in vitro and observed that ADX71743 blocked responses of both mGlu7/7 homodimers and mGlu7/8 heterodimers, whereas 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazonolo[4,5-c]pyridin-4(5H)-one only antagonized responses of mGlu7/7 homodimers. Taken together with our electrophysiology observations, these results suggest that a receptor with pharmacology consistent with an mGlu7/8 heterodimer modulates the activity of SC-CA1 synapses. Building on this hypothesis, we identified two additional structurally related mGlu7 NAMs that also differ in their activity at mGlu7/8 heterodimers, in a manner consistent with their ability to inhibit synaptic transmission and plasticity at SC-CA1. Thus, we propose that mGlu7/8 heterodimers are a key molecular target for modulating the activity of hippocampal SC-CA1 synapses.


Assuntos
Ácido Glutâmico , Receptores de Glutamato Metabotrópico , Sinapses , Hipocampo/metabolismo , Potenciação de Longa Duração , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Animais , Roedores , Saccharomyces cerevisiae , Eletrofisiologia
3.
Neuron ; 110(6): 1068-1083.e5, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35045338

RESUMO

Inhibitory interneurons orchestrate prefrontal cortex (PFC) activity, but we have a limited understanding of the molecular and experience-dependent mechanisms that regulate synaptic plasticity across PFC microcircuits. We discovered that mGlu5 receptor activation facilitates long-term potentiation at synapses from the basolateral amygdala (BLA) onto somatostatin-expressing interneurons (SST-INs) in mice. This plasticity appeared to be recruited during acute restraint stress, which induced intracellular calcium mobilization within SST-INs and rapidly potentiated postsynaptic strength onto SST-INs. Restraint stress and mGlu5 receptor activation each augmented BLA recruitment of SST-IN phasic feedforward inhibition, shunting information from other excitatory inputs, including the mediodorsal thalamus. Finally, studies using cell-type-specific mGlu5 receptor knockout mice revealed that mGlu5 receptor function in SST-expressing cells is necessary for restraint stress-induced changes to PFC physiology and related behaviors. These findings provide new insights into interneuron-specific synaptic plasticity mechanisms and suggest that SST-IN microcircuits may be promising targets for treating stress-induced psychiatric diseases.


Assuntos
Interneurônios , Somatostatina , Animais , Interneurônios/fisiologia , Potenciação de Longa Duração , Camundongos , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiologia , Somatostatina/metabolismo , Sinapses/fisiologia
4.
Bioorg Med Chem Lett ; 50: 128342, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34461178

RESUMO

This letter describes synthesis and evaluation of two series of dual mGlu2/mGlu3 positive allosteric modulators with moderate mGlu3 potency and robust mGlu2 potency in thallium flux assays. These compounds were profiled their ability to modulate mGlu3-mediated signaling in central neurons by co-application of a selective mGlu2 NAM to isolate mGlu3-selective effects. Using acute mouse brain slices from the prefrontal cortex, potentiation of group II mGlu receptor agonist Ca2+ signaling in PFC pyramidal cells with either the dual mGlu2/mGlu3 PAM 16e or 23d demonstrated effects mediated selectively via mGlu3.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Neurônios/metabolismo , Receptores de Glutamato Metabotrópico/administração & dosagem , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Linhagem Celular , Desenho de Fármacos , Humanos , Camundongos , Estrutura Molecular , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/citologia , Células Piramidais , Receptores de Glutamato Metabotrópico/genética , Relação Estrutura-Atividade
5.
Biol Psychiatry ; 90(6): 385-398, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965197

RESUMO

BACKGROUND: Polymorphisms in GRM3, the gene encoding the mGlu3 metabotropic glutamate receptor, are associated with impaired cognition and neuropsychiatric disorders such as schizophrenia. Limited availability of selective genetic and molecular tools has hindered progress in developing a clear understanding of the mechanisms through which mGlu3 receptors regulate synaptic plasticity and cognition. METHODS: We examined associative learning in mice with trace fear conditioning, a hippocampal-dependent learning task disrupted in patients with schizophrenia. Underlying cellular mechanisms were assessed using ex vivo hippocampal slice preparations with selective pharmacological tools and selective genetic deletion of mGlu3 receptor expression in specific neuronal subpopulations. RESULTS: mGlu3 receptor activation enhanced trace fear conditioning and reversed deficits induced by subchronic phencyclidine. Mechanistic studies revealed that mGlu3 receptor activation induced metaplastic changes, biasing afferent stimulation to induce long-term potentiation through an mGlu5 receptor-dependent, endocannabinoid-mediated, disinhibitory mechanism. Selective genetic deletion of either mGlu3 or mGlu5 from hippocampal pyramidal cells eliminated effects of mGlu3 activation, revealing a novel mechanism by which mGlu3 and mGlu5 interact to enhance cognitive function. CONCLUSIONS: These data demonstrate that activation of mGlu3 receptors in hippocampal pyramidal cells enhances hippocampal-dependent cognition in control and impaired mice by inducing a novel form of metaplasticity to regulate circuit function, providing a clear mechanism through which genetic variation in GRM3 can contribute to cognitive deficits. Developing approaches to positively modulate mGlu3 receptor function represents an encouraging new avenue for treating cognitive disruption in schizophrenia and other psychiatric diseases.


Assuntos
Receptores de Glutamato Metabotrópico , Esquizofrenia , Animais , Cognição , Hipocampo/metabolismo , Potenciação de Longa Duração , Camundongos , Receptores de Glutamato Metabotrópico/metabolismo , Esquizofrenia/genética
6.
Sci Signal ; 14(677)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824180

RESUMO

Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors that regulate various aspects of central nervous system processing in normal physiology and in disease. They are thought to function as disulfide-linked homodimers, but studies have suggested that mGluRs can form functional heterodimers in cell lines. Using selective allosteric ligands, ex vivo brain slice electrophysiology, and optogenetic approaches, we found that two mGluR subtypes-mGluR2 and mGluR4 (or mGlu2 and mGlu4)-exist as functional heterodimers that regulate excitatory transmission in a synapse-specific manner within the rodent medial prefrontal cortex (mPFC). Activation of mGlu2/mGlu4 heterodimers inhibited glutamatergic signaling at thalamo-mPFC synapses but not at hippocampus-mPFC or amygdala-mPFC synapses. These findings raise the possibility that selectively targeting these heterodimers could be a therapeutic strategy for some neurologic and neuropsychiatric disorders involving specific brain circuits.


Assuntos
Córtex Pré-Frontal , Transmissão Sináptica , Sinapses
7.
Sci Rep ; 10(1): 15347, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948791

RESUMO

Ultrasound is gaining traction as a neuromodulation method due to its ability to remotely and non-invasively modulate neuronal activity with millimeter precision. However, there is little consensus about optimal ultrasound parameters required to elicit neuromodulation and how specific parameters drive mechanisms that underlie ultrasound neuromodulation. We address these questions in this work by performing a study to determine effective ultrasound parameters in a transgenic mouse brain slice model that enables calcium imaging as a quantitative readout of neuronal activity for ultrasound neuromodulation. We report that (1) calcium signaling increases with the application of ultrasound; (2) the neuronal response rate to ultrasound is dependent on pulse repetition frequency (PRF); and (3) ultrasound can reversibly alter the inhibitory effects of tetrodotoxin (TTX) in pharmacological studies. This study offers mechanistic insight into the PRF dependence of ultrasound neuromodulation and the nature of ultrasound/ion channel interaction.


Assuntos
Encéfalo/diagnóstico por imagem , Cálcio/metabolismo , Neurônios/fisiologia , Tetrodotoxina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Cálcio/análise , Sinalização do Cálcio , Feminino , Canais Iônicos/metabolismo , Masculino , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Ondas Ultrassônicas
8.
Sci Signal ; 12(610)2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796631

RESUMO

Highly selective, positive allosteric modulators (PAMs) of the M1 subtype of muscarinic acetylcholine receptor have emerged as an exciting new approach to potentially improve cognitive function in patients suffering from Alzheimer's disease and schizophrenia. Discovery programs have produced a structurally diverse range of M1 receptor PAMs with distinct pharmacological properties, including different extents of agonist activity and differences in signal bias. This includes biased M1 receptor PAMs that can potentiate coupling of the receptor to activation of phospholipase C (PLC) but not phospholipase D (PLD). However, little is known about the role of PLD in M1 receptor signaling in native systems, and it is not clear whether biased M1 PAMs display differences in modulating M1-mediated responses in native tissue. Using PLD inhibitors and PLD knockout mice, we showed that PLD was necessary for the induction of M1-dependent long-term depression (LTD) in the prefrontal cortex (PFC). Furthermore, biased M1 PAMs that did not couple to PLD not only failed to potentiate orthosteric agonist-induced LTD but also blocked M1-dependent LTD in the PFC. In contrast, biased and nonbiased M1 PAMs acted similarly in potentiating M1-dependent electrophysiological responses that were PLD independent. These findings demonstrate that PLD plays a critical role in the ability of M1 PAMs to modulate certain central nervous system (CNS) functions and that biased M1 PAMs function differently in brain regions implicated in cognition.


Assuntos
Córtex Cerebral/enzimologia , Plasticidade Neuronal , Fosfolipase D/genética , Fosfolipase D/metabolismo , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Sítio Alostérico , Animais , Células CHO , Cálcio/química , Cognição , Cricetinae , Cricetulus , Eletrofisiologia , Feminino , Humanos , Depressão Sináptica de Longo Prazo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Córtex Pré-Frontal/enzimologia , Transdução de Sinais , Fosfolipases Tipo C/metabolismo
9.
ACS Pharmacol Transl Sci ; 2(3): 198-209, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31259318

RESUMO

Metabotropic glutamate (mGlu) receptor type 5 (mGlu5) positive allosteric modulators (PAMs) enhance hippocampal long-term potentiation (LTP) and have cognition-enhancing effects in animal models. These effects were initially thought to be mediated by potentiation of mGlu5 modulation of N-methyl-d-aspartate receptor (NMDAR) currents. However, a biased mGlu5 PAM that potentiates Gαq-dependent mGlu5 signaling, but not mGlu5 modulation of NMDAR currents, retains cognition-enhancing effects in animal models, suggesting that potentiation of NMDAR currents is not required for these in vivo effects of mGlu5 PAMs. However, it is not clear whether the potentiation of NMDAR currents is critical for the ability of mGlu5 PAMs to enhance hippocampal LTP. We now report the characterization of effects of two structurally distinct mGlu5 PAMs, VU-29 and VU0092273, on NMDAR currents and hippocampal LTP. As with other mGlu5 PAMs that do not display observable bias for potentiation of NMDAR currents, VU0092273 enhanced both mGlu5 modulation of NMDAR currents and induction of LTP at the hippocampal Schaffer collateral (SC)-CA1 synapse. In contrast, VU-29 did not potentiate mGlu5 modulation of NMDAR currents but induced robust potentiation of hippocampal LTP. Interestingly, both VU-29 and VU0092273 suppressed evoked inhibitory postsynaptic currents (eIPSCs) in CA1 pyramidal cells, and this effect was blocked by the cannabinoid receptor type 1 (CB1) antagonist AM251. Furthermore, AM251 blocked the ability of both mGlu5 PAMs to enhance LTP. Finally, both PAMs failed to enhance LTP in mice with the restricted genetic deletion of mGlu5 in CA1 pyramidal cells. Taken together with previous findings, these results suggest that enhancement of LTP by mGlu5 PAMs does not depend on mGlu5 modulation of NMDAR currents but is mediated by a previously established mechanism in which mGlu5 in CA1 pyramidal cells induces endocannabinoid release and CB1-dependent disinhibition.

10.
Neuropsychopharmacology ; 43(8): 1763-1771, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29581537

RESUMO

Highly selective positive allosteric modulators (PAMs) of the M1 subtype of muscarinic acetylcholine receptor have emerged as an exciting new approach for improving cognitive function in patients suffering from Alzheimer's disease and schizophrenia. However, excessive activation of M1 is known to induce seizure activity and have actions in the prefrontal cortex (PFC) that could impair cognitive function. We now report a series of pharmacological, electrophysiological, and behavioral studies in which we find that recently reported M1 PAMs, PF-06764427 and MK-7622, have robust agonist activity in cell lines and agonist effects in the mouse PFC, and have the potential to overactivate the M1 receptor and disrupt PFC function. In contrast, structurally distinct M1 PAMs (VU0453595 and VU0550164) are devoid of agonist activity in cell lines and maintain activity dependence of M1 activation in the PFC. Consistent with the previously reported effect of PF-06764427, the ago-PAM MK-7622 induces severe behavioral convulsions in mice. In contrast, VU0453595 does not induce behavioral convulsions at doses well above those required for maximal efficacy in enhancing cognitive function. Furthermore, in contrast to the robust efficacy of VU0453595, the ago-PAM MK-7622 failed to improve novel object recognition, a rodent assay of cognitive function. These findings suggest that in vivo cognition-enhancing efficacy of M1 PAMs can be observed with PAMs lacking intrinsic agonist activity and that intrinsic agonist activity of M1 PAMs may contribute to adverse effects and reduced efficacy in improving cognitive function.


Assuntos
Colinérgicos/farmacologia , Nootrópicos/farmacologia , Receptor Muscarínico M1/metabolismo , Regulação Alostérica , Animais , Células CHO , Cricetulus , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/genética , Reconhecimento Psicológico/efeitos dos fármacos , Técnicas de Cultura de Tecidos
11.
Neuron ; 96(6): 1358-1372.e4, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29268098

RESUMO

Cholinergic regulation of dopaminergic inputs into the striatum is critical for normal basal ganglia (BG) function. This regulation of BG function is thought to be primarily mediated by acetylcholine released from cholinergic interneurons (ChIs) acting locally in the striatum. We now report a combination of pharmacological, electrophysiological, optogenetic, chemogenetic, and functional magnetic resonance imaging studies suggesting extra-striatal cholinergic projections from the pedunculopontine nucleus to the substantia nigra pars reticulata (SNr) act on muscarinic acetylcholine receptor subtype 4 (M4) to oppose cAMP-dependent dopamine receptor subtype 1 (D1) signaling in presynaptic terminals of direct pathway striatal spiny projections neurons. This induces a tonic inhibition of transmission at direct pathway synapses and D1-mediated activation of motor activity. These studies provide important new insights into the unique role of M4 in regulating BG function and challenge the prevailing hypothesis of the centrality of striatal ChIs in opposing dopamine regulation of BG output.


Assuntos
Gânglios da Base/citologia , Neurônios Colinérgicos/fisiologia , Dopamina/metabolismo , Parte Reticular da Substância Negra/fisiologia , Receptor Muscarínico M4/metabolismo , Acetilcolina/metabolismo , Animais , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/fisiologia , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Colina O-Acetiltransferase/metabolismo , Colinérgicos/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Dopamina/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Locomoção/efeitos dos fármacos , Locomoção/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurotransmissores/farmacologia , Oxigênio/sangue , Parte Reticular da Substância Negra/citologia , Parte Reticular da Substância Negra/diagnóstico por imagem , Núcleo Tegmental Pedunculopontino/citologia , Receptor Muscarínico M4/genética , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
12.
Sci Transl Med ; 9(403)2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814546

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. The cognitive impairments seen in mouse models of RTT correlate with deficits in long-term potentiation (LTP) at Schaffer collateral (SC)-CA1 synapses in the hippocampus. Metabotropic glutamate receptor 7 (mGlu7) is the predominant mGlu receptor expressed presynaptically at SC-CA1 synapses in adult mice, and its activation on GABAergic interneurons is necessary for induction of LTP. We demonstrate that pathogenic mutations in MECP2 reduce mGlu7 protein expression in brain tissue from RTT patients and in MECP2-deficient mouse models. In rodents, this reduction impairs mGlu7-mediated control of synaptic transmission. We show that positive allosteric modulation of mGlu7 activity restores LTP and improves contextual fear learning, novel object recognition, and social memory. Furthermore, mGlu7 positive allosteric modulation decreases apneas in Mecp2+/- mice, suggesting that mGlu7 may be a potential therapeutic target for multiple aspects of the RTT phenotype.


Assuntos
Cognição , Receptores de Glutamato Metabotrópico/metabolismo , Respiração , Síndrome de Rett/metabolismo , Síndrome de Rett/fisiopatologia , Comportamento Social , Animais , Apneia/tratamento farmacológico , Apneia/fisiopatologia , Autopsia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Córtex Motor/patologia , Plasticidade Neuronal/efeitos dos fármacos , Fenótipo , Ácidos Picolínicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/genética , Respiração/efeitos dos fármacos , Síndrome de Rett/patologia , Transcrição Gênica/efeitos dos fármacos
13.
Neuropsychopharmacology ; 42(13): 2553-2566, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28664928

RESUMO

Activation of ß-adrenergic receptors (ßARs) enhances both the induction of long-term potentiation (LTP) in hippocampal CA1 pyramidal cells and hippocampal-dependent cognitive function. Interestingly, previous studies reveal that coincident activation of group II metabotropic glutamate (mGlu) receptors with ßARs in the hippocampal astrocytes induces a large increase in cyclic-AMP (cAMP) accumulation and release of adenosine. Adenosine then acts on A1 adenosine receptors at neighboring excitatory Schaffer collateral terminals, which could counteract effects of activation of neuronal ßARs on excitatory transmission. On the basis of this, we postulated that activation of the specific mGlu receptor subtype that mediates this response could inhibit ßAR-mediated effects on hippocampal synaptic plasticity and cognitive function. Using novel mGlu receptor subtype-selective allosteric modulators along with knockout mice we now report that the effects of mGlu2/3 agonists on ßAR-mediated increases in cAMP accumulation are exclusively mediated by mGlu3. Furthermore, mGlu3 activation inhibits the ability of the ßAR agonist isoproterenol to enhance hippocampal LTP, and this effect is absent in slices treated with either a glial toxin or an adenosine A1 receptor antagonist. Finally, systemic administration of the mGlu2/3 agonist LY379268 disrupted contextual fear memory in a manner similar to the effect of the ßAR antagonist propranolol, and this effect was reversed by the mGlu3-negative allosteric modulator VU0650786. Taken together, these data suggest that mGlu3 can influence astrocytic signaling and modulate ßAR-mediated effects on hippocampal synaptic plasticity and cognitive function.


Assuntos
AMP Cíclico/metabolismo , Potenciação de Longa Duração/fisiologia , Consolidação da Memória/fisiologia , Receptores Adrenérgicos beta/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Consolidação da Memória/efeitos dos fármacos , Camundongos Endogâmicos ICR , Camundongos Knockout , Neurotransmissores/farmacologia , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/genética , Técnicas de Cultura de Tecidos
14.
ACS Chem Neurosci ; 8(10): 2254-2265, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28679049

RESUMO

Selective potentiation of the mGlu5 subtype of metabotropic glutamate (mGlu) receptor using positive allosteric modulators (PAMs) has robust cognition-enhancing effects in rodent models that are relevant for schizophrenia. Until recently, these effects were thought to be due to potentiation of mGlu5-induced modulation of NMDA receptor (NMDAR) currents and NMDAR-dependent synaptic plasticity. However, "biased" mGlu5 PAMs that do not potentiate mGlu5 effects on NMDAR currents show efficacy that is similar to that of prototypical mGlu5 PAMs, suggesting that NMDAR-independent mechanisms must be involved in these actions. We now report that synaptic activation of mGlu5 is required for a form of long-term depression (mLTD) in mouse prefrontal cortex (PFC) that is induced by activation of M1 muscarinic acetylcholine (mAChR) receptors, which was previously thought to be independent of mGlu5 activation. Interestingly, a biased mGlu5 PAM, VU0409551, that does not potentiate mGlu5 modulation of NMDAR currents, potentiated induction of mLTD. Furthermore, coactivation of mGlu5 and M1 receptors increased GABAA-dependent inhibitory tone in the PFC pyramidal neurons, which likely contributes to the observed mLTD. Finally, systemic administration of the biased mGlu5 PAM reversed deficits in mLTD and associated cognitive deficits in a model of cortical disruption caused by repeated phencyclidine exposure that is relevant for schizophrenia and was previously shown to be responsive to selective M1 muscarinic receptor PAMs. These studies provide exciting new insights into a novel mechanism by which mGlu5 PAMs can reverse deficits in PFC function and cognition that is independent of modulation of NMDAR currents.


Assuntos
Colinérgicos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/metabolismo , Esquizofrenia/tratamento farmacológico , Transmissão Sináptica/efeitos dos fármacos , Animais , Antipsicóticos/farmacologia , Cognição/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Fenciclidina/farmacologia , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo
15.
Neuropharmacology ; 118: 209-222, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28336323

RESUMO

The dorsolateral striatum is critically involved in movement control and motor learning. Striatal function is regulated by a variety of neuromodulators including acetylcholine. Previous studies have shown that cholinergic activation excites striatal principal projection neurons, medium spiny neurons (MSNs), and this action is mediated by muscarinic acetylcholine subtype 1 receptors (M1) through modulating multiple potassium channels. In the present study, we used electrophysiology techniques in conjunction with optogenetic and pharmacological tools to determine the long-term effects of striatal cholinergic activation on MSN intrinsic excitability. A transient increase in acetylcholine release in the striatum by optogenetic stimulation resulted in a long-lasting increase in excitability of MSNs, which was associated with hyperpolarizing shift of action potential threshold and decrease in afterhyperpolarization (AHP) amplitude, leading to an increase in probability of EPSP-action potential coupling. The M1 selective antagonist VU0255035 prevented, while the M1 selective positive allosteric modulator (PAM) VU0453595 potentiated the cholinergic activation-induced persistent increase in MSN intrinsic excitability, suggesting that M1 receptors are critically involved in the induction of this long-lasting response. This M1 receptor-dependent long-lasting change in MSN intrinsic excitability could have significant impact on striatal processing and might provide a novel mechanism underlying cholinergic regulation of the striatum-dependent motor learning and cognitive function. Consistent with this, behavioral studies indicate that potentiation of M1 receptor signaling by VU0453595 enhanced performance of mice in cue-dependent water-based T-maze, a dorsolateral striatum-dependent learning task.


Assuntos
Corpo Estriado/citologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios/fisiologia , Receptor Muscarínico M1/metabolismo , Acetilcolina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Channelrhodopsins , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Colinérgicos/farmacologia , Sinais (Psicologia) , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Neurônios/efeitos dos fármacos , Estimulação Luminosa
16.
Neuron ; 91(6): 1244-1252, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27618677

RESUMO

Muscarinic receptors represent a promising therapeutic target for schizophrenia, but the mechanisms underlying the antipsychotic efficacy of muscarinic modulators are not well understood. Here, we report that activation of M4 receptors on striatal spiny projection neurons results in a novel form of dopaminergic regulation resulting in a sustained depression of striatal dopamine release that is observed more than 30 min after removal of the muscarinic receptor agonist. Furthermore, both the M4-mediated sustained inhibition of dopamine release and the antipsychotic-like efficacy of M4 activators were found to require intact signaling through CB2 cannabinoid receptors. These findings highlight a novel mechanism by which striatal cholinergic and cannabinoid signaling leads to sustained reductions in dopaminergic transmission and concurrent behavioral effects predictive of antipsychotic efficacy.


Assuntos
Antipsicóticos/farmacologia , Dopamina/metabolismo , Agonistas Muscarínicos/farmacologia , Receptor CB2 de Canabinoide/metabolismo , Receptor Muscarínico M4/fisiologia , Regulação Alostérica/efeitos dos fármacos , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Lipase Lipoproteica/antagonistas & inibidores , Camundongos Knockout , Oxotremorina/análogos & derivados , Oxotremorina/farmacologia , Inibição Pré-Pulso/efeitos dos fármacos , Piridazinas/farmacologia , Receptor CB2 de Canabinoide/fisiologia , Receptor Muscarínico M4/agonistas , Tiofenos/farmacologia
17.
Curr Neuropharmacol ; 14(5): 455-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27296640

RESUMO

Long-term potentiation (LTP) and long-term depression (LTD) are two distinct forms of synaptic plasticity that have been extensively characterized at the Schaffer collateral-CA1 (SCCA1) synapse and the mossy fiber (MF)-CA3 synapse within the hippocampus, and are postulated to be the molecular underpinning for several cognitive functions. Deficits in LTP and LTD have been implicated in the pathophysiology of several neurological and psychiatric disorders. Therefore, there has been a large effort focused on developing an understanding of the mechanisms underlying these forms of plasticity and novel therapeutic strategies that improve or rescue these plasticity deficits. Among many other targets, the metabotropic glutamate (mGlu) receptors show promise as novel therapeutic candidates for the treatment of these disorders. Among the eight distinct mGlu receptor subtypes (mGlu1-8), the mGlu1,2,3,5,7 subtypes are expressed throughout the hippocampus and have been shown to play important roles in the regulation of synaptic plasticity in this brain area. However, development of therapeutic agents that target these mGlu receptors has been hampered by a lack of subtype-selective compounds. Recently, discovery of allosteric modulators of mGlu receptors has provided novel ligands that are highly selective for individual mGlu receptor subtypes. The mGlu receptors modulate the multiple forms of synaptic plasticity at both SC-CA1 and MF synapses and allosteric modulators of mGlu receptors have emerged as potential therapeutic agents that may rescue plasticity deficits and improve cognitive function in patients suffering from multiple neurological and psychiatric disorders.


Assuntos
Hipocampo/metabolismo , Transtornos Mentais/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Regulação Alostérica , Animais , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/uso terapêutico , Hipocampo/efeitos dos fármacos , Humanos , Transtornos Mentais/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Psicotrópicos/farmacologia , Psicotrópicos/uso terapêutico
18.
Neuron ; 89(5): 884-6, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26938436

RESUMO

In this issue of Neuron, Hackos et al. (2016) report the discovery of novel positive allosteric modulators that are highly selective for GluN2A-containing NMDA receptors. This novel class of PAMs shows distinct effects on synaptic plasticity.


Assuntos
Modelos Moleculares , Rede Nervosa/fisiologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Humanos
19.
J Pharmacol Exp Ther ; 356(1): 123-36, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26503377

RESUMO

Negative allosteric modulators (NAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have potential applications in the treatment of fragile X syndrome, levodopa-induced dyskinesia in Parkinson disease, Alzheimer disease, addiction, and anxiety; however, clinical and preclinical studies raise concerns that complete blockade of mGlu5 and inverse agonist activity of current mGlu5 NAMs contribute to adverse effects that limit the therapeutic use of these compounds. We report the discovery and characterization of a novel mGlu5 NAM, N,N-diethyl-5-((3-fluorophenyl)ethynyl)picolinamide (VU0477573) that binds to the same allosteric site as the prototypical mGlu5 NAM MPEP but displays weak negative cooperativity. Because of this weak cooperativity, VU0477573 acts as a "partial NAM" so that full occupancy of the MPEP site does not completely inhibit maximal effects of mGlu5 agonists on intracellular calcium mobilization, inositol phosphate (IP) accumulation, or inhibition of synaptic transmission at the hippocampal Schaffer collateral-CA1 synapse. Unlike previous mGlu5 NAMs, VU0477573 displays no inverse agonist activity assessed using measures of effects on basal [(3)H]inositol phosphate (IP) accumulation. VU0477573 acts as a full NAM when measuring effects on mGlu5-mediated extracellular signal-related kinases 1/2 phosphorylation, which may indicate functional bias. VU0477573 exhibits an excellent pharmacokinetic profile and good brain penetration in rodents and provides dose-dependent full mGlu5 occupancy in the central nervous system (CNS) with systemic administration. Interestingly, VU0477573 shows robust efficacy, comparable to the mGlu5 NAM MTEP, in models of anxiolytic activity at doses that provide full CNS occupancy of mGlu5 and demonstrate an excellent CNS occupancy-efficacy relationship. VU0477573 provides an exciting new tool to investigate the efficacy of partial NAMs in animal models.


Assuntos
Agonistas GABAérgicos/farmacologia , Ácidos Picolínicos/farmacologia , Receptor de Glutamato Metabotrópico 5/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Animais , Ansiolíticos/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Descoberta de Drogas , Agonistas GABAérgicos/farmacocinética , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Picolínicos/farmacocinética , Piridinas/metabolismo , Ensaio Radioligante , Ratos , Receptor de Glutamato Metabotrópico 5/metabolismo , Transmissão Sináptica/efeitos dos fármacos
20.
Proc Natl Acad Sci U S A ; 112(45): 14078-83, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26508634

RESUMO

Mutations that lead to Huntington's disease (HD) result in increased transmission at glutamatergic corticostriatal synapses at early presymptomatic stages that have been postulated to set the stage for pathological changes and symptoms that are observed at later ages. Based on this, pharmacological interventions that reverse excessive corticostriatal transmission may provide a novel approach for reducing early physiological changes and motor symptoms observed in HD. We report that activation of the M4 subtype of muscarinic acetylcholine receptor reduces transmission at corticostriatal synapses and that this effect is dramatically enhanced in presymptomatic YAC128 HD and BACHD relative to wild-type mice. Furthermore, chronic administration of a novel highly selective M4 positive allosteric modulator (PAM) beginning at presymptomatic ages improves motor and synaptic deficits in 5-mo-old YAC128 mice. These data raise the exciting possibility that selective M4 PAMs could provide a therapeutic strategy for the treatment of HD.


Assuntos
Regulação Alostérica/fisiologia , Ácido Glutâmico/metabolismo , Doença de Huntington/tratamento farmacológico , Receptor Muscarínico M4/fisiologia , Transmissão Sináptica/fisiologia , Animais , Encéfalo/metabolismo , Fluorescência , Doença de Huntington/fisiopatologia , Imuno-Histoquímica , Camundongos , Camundongos Mutantes , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Teste de Desempenho do Rota-Rod , Transmissão Sináptica/efeitos dos fármacos , Tiofenos/farmacologia , Tiofenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA