Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Plant Physiol ; 303: 154350, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39293266

RESUMO

Fruit ripening in tomato is a highly coordinated developmental process accompanied with fruit softening, which is closely associated with cell wall degradation and remodeling. Xyloglucan endotransglucosylase/hydrolases (XTHs) are known to play an essential role in cell wall xyloglucan metabolism. Tomato XTH5 exhibits xyloglucan endotransglucosylase (XET) activity in vitro, but the understanding of its biological role in fruit ripening remains unclear. In this study, we revealed that SlXTH5 is highly expressed in mature fruits. Knockout mutant plants of SlXTH5 were generated by CRISPR/Cas9 gene editing strategy in tomato cultivar Micro-Tom. The mutant fruits showed accelerated transition from unripe to ripe process and earlier ethylene accumulation compared to wild type fruits. Although the mutation of SlXTH5 did not affect the size, weight and number of fruits, it indeed increased fruit firmness and extended shelf life, which is probably attributed to the increased cell layer and cell wall thickness of pericarp tissue. Pathogen infection experiment showed the enhanced resistance of mutant fruits to Botrytis cinerea. These results revealed the role of SlXTH5 in fruit ripening process, and provide new insight into how cell wall metabolism and remodeling regulate fruit softening and shelf life.

2.
Aging (Albany NY) ; 16(10): 8511-8523, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38761175

RESUMO

BACKGROUND: Long noncoding RNAs (LncRNAs) have been demonstrated to have significant roles in the carcinogenesis of hepatocellular carcinoma (HCC). In this work, we sought to determine LncRNA SH3BP5-AS1's function and mechanism in the emergence of HCC. RESULTS: First, we discovered that the advanced tumor stage was strongly correlated with high levels of LncRNA SH3BP5-AS1 expression in HCC. MiR-6838-5p expression was down-regulated and inversely correlated with SH3BP5-AS1 expression. Additionally, overexpression of SH3BP5-AS1 boosted cell invasion, migration, and proliferation. The oncogenic effects of the inhibitor of miR-6838-5p were eliminated when PTPN4 was suppressed, following the identification of PTPN4 as a direct target of miR-6838-5p. In addition, SH3BP5-AS1 promoted cellular glycolysis via miR-6838-5p sponging and PTPN4 activation. Lastly, by directly interacting to the promoter of SH3BP5-AS1, HIF-1α could control the transcription of the gene. CONCLUSIONS: Our research suggests that SH3BP5-AS1 controls miR-6838-5p/PTPN4 in order to act as a new carcinogenic LncRNA during the growth of HCC cells. METHODS: The expression levels of SH3BP5-AS1, miR-6838-5p and PTPN4 were detected by qRT-PCR and Western blot. The effects of LncRNA SH3BP5-AS1/miR-6838-5p/PTPN4 on the proliferation, metastasis and glycolysis of HCC cells were clarified by experimental cellular functionality assays, cell derived xenograft and Glycolysis assay.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , MicroRNAs , Proteína Tirosina Fosfatase não Receptora Tipo 4 , RNA Longo não Codificante , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 4/genética , Proteína Tirosina Fosfatase não Receptora Tipo 4/metabolismo , Proliferação de Células/genética , Progressão da Doença , Linhagem Celular Tumoral , Movimento Celular/genética , Animais , Masculino , Glicólise/genética , Camundongos , Feminino , Pessoa de Meia-Idade , Camundongos Nus
3.
Front Plant Sci ; 14: 1256338, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965016

RESUMO

A synthetic octoploid rapeseed, Y3380, induces maternal doubled haploids when used as a pollen donor to pollinate plant. However, the mechanism underlying doubled haploid formation remains elusive. We speculated that double haploid induction occurs as the inducer line's chromosomes pass to the maternal egg cell, and the zygote is formed through fertilization. In the process of zygotic mitosis, the paternal chromosome is specifically eliminated. Part of the paternal gene might have infiltrated the maternal genome through homologous exchange during the elimination process. Then, the zygote haploid genome doubles (early haploid doubling, EH phenomenon), and the doubled zygote continues to develop into a complete embryo, finally forming doubled haploid offspring. To test our hypothesis, in the current study, the octoploid Y3380 line was back bred with the 4122-cp4-EPSPS exogenous gene used as a marker into hexaploid Y3380-cp4-EPSPS as paternal material to pollinate three different maternal materials. The fertilization process of crossing between the inducer line and the maternal parent was observed 48 h after pollination, and the fertilization rate reached 97.92% and 98.72%. After 12 d of pollination, the presence of cp4-EPSPS in the embryo was detected by in situ PCR, and at 13-23 d after pollination, the probability of F1 embryos containing cp4-EPSPS gene was up to 97.27%, but then declined gradually to 0% at 23-33 d. At the same time, the expression of cp4-EPSPS was observed by immunofluorescence in the 3rd to 29th day embryo. As the embryos developed, cp4-EPSPS marker genes were constantly lost, accompanied by embryonic death. After 30 d, the presence of cp4-EPSPS was not detected in surviving embryos. Meanwhile, SNP detection of induced offspring confirmed the existence of double haploids, further indicating that the induction process was caused by the loss of specificity of the paternal chromosome. The tetraploid-induced offspring showed infiltration of the induced line gene loci, with heterozygosity and homozygosity. Results indicated that the induced line chromosomes were eliminated during embryonic development, and the maternal haploid chromosomes were synchronously doubled in the embryo. These findings support our hypothesis and lay a theoretical foundation for further localization or cloning of functional genes involved in double haploid induction in rapeseed.

4.
J Exp Bot ; 74(17): 5104-5123, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37386914

RESUMO

Xyloglucan, a major hemicellulose, interacts with cellulose and pectin to assemble primary cell walls in plants. Loss of the xyloglucan galactosyltransferase MURUS3 (MUR3) leads to the deficiency of galactosylated xyloglucan and perturbs plant growth. However, it is unclear whether defects in xyloglucan galactosylation influence the synthesis of other wall polysaccharides, cell wall integrity, cytoskeleton behaviour, and endomembrane homeostasis. Here, we found that in mur3-7 etiolated seedlings cellulose was reduced, CELLULOSE SYNTHASE (CESA) genes were down-regulated, the density and mobility of cellulose synthase complexes (CSCs) were decreased, and cellulose microfibrils become discontinuous. Pectin, rhamnogalacturonan II (RGII), and boron contents were reduced in mur3-7 plants, and B-RGII cross-linking was abnormal. Wall porosity and thickness were significantly increased in mur3-7 seedlings. Endomembrane aggregation was also apparent in the mur3-7 mutant. Furthermore, mutant seedlings and their actin filaments were more sensitive to Latrunculin A (LatA) treatment. However, all defects in mur3-7 mutants were substantially restored by exogenous boric acid application. Our study reveals the importance of MUR3-mediated xyloglucan galactosylation for cell wall structural assembly and homeostasis, which is required for the stabilization of the actin cytoskeleton and the endomembrane system.


Assuntos
Arabidopsis , Arabidopsis/genética , Xilanos/química , Celulose , Parede Celular/química , Citoesqueleto de Actina , Pectinas , Plântula
5.
Plant Cell Rep ; 42(6): 1107-1124, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37052714

RESUMO

KEYMESSAGE: The putative myristoylome of moss P. patens opens an avenue for studying myristoylation substrates in non-canonical model plants. A myristoylation signal was shown sufficient for membrane targeting and useful for membrane dynamics visualization during cell growth. N-myristoylation (MYR) is one form of lipid modification catalyzed by N-myristoyltransferase that enables protein-membrane association. MYR is highly conserved in all eukaryotes. However, the study of MYR is limited to a few models such as yeasts, humans, and Arabidopsis. Here, using prediction tools, we report the characterization of the putative myristoylome of the moss Physcomitrium patens. We show that basal land plants display a similar signature of MYR to Arabidopsis and may have organism-specific substrates. Phylogenetically, MYR signals have mostly co-evolved with protein function but also exhibit variability in an organism-specific manner. We also demonstrate that the MYR motif of a moss brassinosteroid-signaling kinase is an efficient plasma membrane targeting signal and labels lipid-rich domains in tip-growing cells. Our results provide insights into the myristoylome in a basal land plant and lay the foundation for future studies on MYR and its roles in plant evolution.


Assuntos
Arabidopsis , Briófitas , Bryopsida , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Briófitas/genética , Transdução de Sinais , Lipídeos
7.
Front Plant Sci ; 13: 862171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586221

RESUMO

Pectin, cellulose, and hemicellulose constitute the primary cell wall in eudicots and function in multiple developmental processes in plants. Root hairs are outgrowths of specialized epidermal cells that absorb water and nutrients from the soil. Cell wall architecture influences root hair development, but how cell wall remodeling might enable enhanced root hair formation in response to phosphate (P) deficiency remains relatively unclear. Here, we found that POLYGALACTURONASE INVOLVED IN EXPANSION 2 (PGX2) functions in conditional root hair development. Under low P conditions, a PGX2 activation tagged line (PGX2AT ) displays bubble-like root hairs and abnormal callose deposition and superoxide accumulation in roots. We found that the polar localization and trafficking of PIN2 are altered in PGX2AT roots in response to P deficiency. We also found that actin filaments were less compact but more stable in PGX2AT root hair cells and that actin filament skewness in PGX2AT root hairs was recovered by treatment with 1-N-naphthylphthalamic acid (NPA), an auxin transport inhibitor. These results demonstrate that activation tagging of PGX2 affects cell wall remodeling, auxin signaling, and actin microfilament orientation, which may cooperatively regulate root hair development in response to P starvation.

8.
J Plant Physiol ; 274: 153709, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35597109

RESUMO

Pectin, cellulose, and hemicelluloses are major components of primary cell walls in plants. In addition to cell adhesion and expansion, pectin plays a central role in seed mucilage. Seed mucilage contains abundant pectic rhamnogalacturonan-I (RG-I) and lower amounts of homogalacturonan (HG), cellulose, and hemicelluloses. Previously, accumulated evidence has addressed the role of pectin RG-I in mucilage production and adherence. However, less is known about the function of pectin HG in seed coat mucilage formation. In this study, we analyzed a novel mutant, designated things fall apart2 (tfa2), which contains a mutation in HG methyltransferase QUASIMODO2 (QUA2). Etiolated tfa2 seedlings display short hypocotyls and adhesion defects similar to qua2 and tumorous shoot development2 (tsd2) alleles, and show seed mucilage defects. The diminished uronic acid content and methylesterification degree of HG in mutant seed mucilage indicate the role of HG in the formation of seed mucilage. Cellulosic rays in mutant mucilage are collapsed. The epidermal cells of seed coat in tfa2 and tsd2 display deformed columellae and reduced radial wall thickness. Under polyethylene glycol treatment, seeds from these three mutant alleles exhibit reduced germination rates. Together, these data emphasize the requirement of pectic HG biosynthesis for the synthesis of seed mucilage, and the functions of different pectin domains together with cellulose in regulating its formation, expansion, and release.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mucilagem Vegetal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Pectinas/metabolismo , Sementes/genética , Sementes/metabolismo
9.
Front Plant Sci ; 13: 871006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557722

RESUMO

When homozygously fertile plants were induced using doubled haploid (DH) induction lines Y3380 and Y3560, the morphology of the induced F1 generation was basically consistent with the female parent, but the fertility was separated, showing characteristics similar to cytoplasmic male sterile (CMS) and maintainer lines. In this study, the morphology, fertility, ploidy, and cytoplasm genotype of the induced progeny were identified, and the results showed that the sterile progeny was polima cytoplasm sterile (pol CMS) and the fertile progeny was nap cytoplasm. The molecular marker and test-cross experimental results showed that the fertile progeny did not carry the restorer gene of pol CMS and the genetic distance between the female parent and the offspring was 0.002. This suggested that those inductions which produced sterile and fertile progeny were coordinated to CMS and maintainer lines. Through the co-linearity analysis of the mitochondrial DNA (mtDNA), it was found that the rearrangement of mtDNA by DH induction was the key factor that caused the transformation of fertility (nap) into sterility (pol). Also, when heterozygous females were induced with DH induction lines, the induction F2 generation also showed the segregation of fertile and sterile lines, and the genetic distance between sterile and fertile lines was approximately 0.075. Therefore, the induction line can induce different types of female parents, and the breeding of the sterile line and the maintainer line can be achieved through the rapid synchronization of sister crosses and self-crosses. The induction of DH inducer in B. napus can provide a new model for the innovation of germplasm resources and open up a new way for its application.

10.
Nat Plants ; 8(4): 332-340, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411046

RESUMO

Homogalacturonan (HG) is the most abundant pectin subtype in plant cell walls. Although it is a linear homopolymer, its modification states allow for complex molecular encoding. HG metabolism affects its structure, chemical properties, mobility and binding capacity, allowing it to interact dynamically with other polymers during wall assembly and remodelling and to facilitate anisotropic cell growth, cell adhesion and separation, and organ morphogenesis. HGs have also recently been found to function as signalling molecules that transmit information about wall integrity to the cell. Here we highlight recent advances in our understanding of the dual functions of HG as a dynamic structural component of the cell wall and an initiator of intrinsic and environmental signalling. We also predict how HG might interconnect the cell wall, plasma membrane and intracellular components with transcriptional networks to regulate plant growth and development.


Assuntos
Pectinas , Desenvolvimento Vegetal , Parede Celular/metabolismo , Morfogênese , Pectinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA