Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Front Genet ; 15: 1397502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045328

RESUMO

Excessive reactive oxygen species stress due to salinity poses a significant threat to the growth of Glycyrrhiza uralensis Fisch. To adapt to salt stress, G. uralensis engages in alternative splicing (AS) to generate a variety of proteins that help it withstand the effects of salt stress. While several studies have investigated the impact of alternative splicing on plants stress responses, the mechanisms by which AS interacts with transcriptional regulation to modulate the salt stress response in G. uralensis remain poorly understood. In this study, we utilized high-throughput RNA sequencing data to perform a comprehensive analysis of AS events at various time points in G. uralensis under salt stress, with exon skipping (SE) being the predominant AS type. KEGG enrichment analysis was performed on the different splicing genes (DSG), and pathways associated with AS were significantly enriched, including RNA transport, mRNA surveillance, and spliceosome. This indicated splicing regulation of genes, resulting in AS events under salt stress conditions. Moreover, plant response to salt stress pathways were also enriched, such as mitogen-activated protein kinase signaling pathway - plant, flavonoid biosynthesis, and oxidative phosphorylation. We focused on four differentially significant genes in the MAPK pathway by AS and qRT-PCR analysis. The alternative splicing type of MPK4 and SnRK2 was skipped exon (SE). ETR2 and RbohD were retained intron (RI) and alternative 5'splice site (A5SS), respectively. The expression levels of isoform1 of these four genes displayed different but significant increases in different tissue sites and salt stress treatment times. These findings suggest that MPK4, SnRK2, ETR2, and RbohD in G. uralensis activate the expression of isoform1, leading to the production of more isoform1 protein and thereby enhancing resistance to salt stress. These findings suggest that salt-responsive AS directly and indirectly governs G. uralensis salt response. Further investigations into AS function and mechanism during abiotic stresses may offer novel references for bolstering plant stress tolerance.

2.
Plants (Basel) ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891317

RESUMO

The omega-3 fatty acid desaturase enzyme gene FAD3 is responsible for converting linoleic acid to linolenic acid in plant fatty acid synthesis. Despite limited knowledge of its role in cotton growth, our study focused on GhFAD3-4, a gene within the FAD3 family, which was found to promote fiber elongation and cell wall thickness in cotton. GhFAD3-4 was predominantly expressed in elongating fibers, and its suppression led to shorter fibers with reduced cell wall thickness and phosphoinositide (PI) and inositol triphosphate (IP3) levels. Transcriptome analysis of GhFAD3-4 knock-out mutants revealed significant impacts on genes involved in the phosphoinositol signaling pathway. Experimental evidence demonstrated that GhFAD3-4 positively regulated the expression of the GhBoGH3B and GhPIS genes, influencing cotton fiber development through the inositol signaling pathway. The application of PI and IP6 externally increased fiber length in GhFAD3-4 knock-out plants, while inhibiting PI led to a reduced fiber length in GhFAD3-4 overexpressing plants. These findings suggest that GhFAD3-4 plays a crucial role in enhancing fiber development by promoting PI and IP3 biosynthesis, offering the potential for breeding cotton varieties with superior fiber quality.

3.
Biology (Basel) ; 13(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38927259

RESUMO

Cotton is a globally significant economic crop. Brassinosteroids (BRs) are crucial to cotton development. This study systematically analyzed the BR synthase gene family in four cotton species and identified 60 BR genes: 20 in Gossypium hirsutum (GhBRs), 20 in G. barbadense (GbBRs), 10 in G. arboreum (GaBRs), and 10 in G. raimondii (GrBRs). The analysis was extended to chromosomal localization, evolutionary relationships, domain features, and cis-regulatory elements in the promoter regions of BR synthase genes. The results showed that the BR synthase genes were evenly distributed across different subgenomes and chromosomes. Bioinformatics analyses revealed high conservation of amino acid sequences, secondary structures, and conserved domains among the subfamily members, which is closely linked to their pivotal roles in the BR biosynthesis pathway. Cis-element distribution analysis of the BR synthase genes further underscored the complexity of BR gene expression regulation, which is influenced by multiple factors, including plant hormones, abiotic stress, and transcription factors. Expression profiling of GhBRs genes in various cotton tissues and developmental stages highlighted the key roles of GhROT3-1 and GhDET2-1 in fiber elongation and initiation, respectively. Protein-protein interactions and transcription factor analyses further elucidated the regulatory mechanisms of GhROT3-1 and GhDET2-1 in cotton growth and development. This study lays a theoretical foundation for understanding the role of the BR signaling pathway in cotton development, facilitating molecular breeding.

4.
Ren Fail ; 46(2): 2363589, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38874093

RESUMO

PURPOSE: To investigate the dietary nutrient intake of Maintenance hemodialysis (MHD) patients, identify influencing factors, and explore the correlation between dietary nutrient intake and nutritional and disease control indicators. METHODS: This was a multicenter cross-sectional study. A dietary survey was conducted using a three-day dietary record method, and a self-designed diet management software was utilized to calculate the daily intake of dietary nutrients. The nutritional status and disease control indicators were assessed using subjective global assessment, handgrip strength, blood test indexes, and dialysis adequacy. RESULTS: A total of 382 MHD patients were included in this study. Among them, 225 (58.9%) and 233 (61.0%) patients' protein and energy intake did not meet the recommendations outlined in the National Kidney Foundation's Kidney Disease Outcomes Quality Initiative Clinical Practice Guideline for Nutrition in Chronic Kidney Disease (2020 update). The average protein and energy intake for these patients were 0.99 ± 0.32 g/kg/d and 29.06 ± 7.79 kcal/kg/d, respectively. Multiple linear regression analysis showed that comorbidity-diabetes had a negative influence on normalized daily energy intake (nDEI = DEI / ideal body weight) (B = -2.880, p = 0.001) and normalized daily protein intake (nDPI = DPI / ideal body weight) (B = -0.109, p = 0.001). Pearson correlation analysis revealed that dietary DPI (r = -0.109, p < 0.05), DEI (r = -0.226, p < 0.05) and phosphorus (r = -0.195, p < 0.001) intake were statistically correlated to Kt/V; dietary nDPI (r = 0.101, p < 0.05) and sodium (r = -0.144, p < 0.001) intake were statistically correlated to serum urea nitrogen; dietary DPI (r = 0.200, p < 0.001), DEI (r = 0.241, p < 0.001), potassium (r = 0.129, p < 0.05), phosphorus (r = 0.199, p < 0.001), and fiber (r = 0.157, p < 0.001) intake were statistically correlated to serum creatinine; dietary phosphorus (r = 0.117, p < 0.05) and fiber (r = 0.142, p < 0.001) intake were statistically correlated to serum phosphorus; dietary nDPI (r = 0.125, p < 0.05), DPI (r = 0.135, p < 0.05), nDEI (r = 0.116, p < 0.05), DEI (r = 0.125, p < 0.05), potassium (r = 0.148, p < 0.001), and phosphorus (r = 0.156, p < 0.001) intake were statistically correlated to subjective global assessment scores; dietary nDPI (r = 0.215, p < 0.001), DPI (r = 0.341, p < 0.001), nDEI (r = 0.142, p < 0.05), DEI (r = 0.241, p < 0.001), potassium (r = 0.166, p < 0.05), phosphorus (r = 0.258, p < 0.001), and fiber (r = 0.252, p < 0.001) intake were statistically correlated to handgrip strength in males; dietary fiber (r = 0.190, p < 0.05) intake was statistically correlated to handgrip strength in females. CONCLUSIONS: The dietary nutrient intake of MHD patients need improvement. Inadequate dietary nutrient intake among MHD patients could have a detrimental effect on their blood test indexes and overall nutritional status. It is crucial to address and optimize the dietary intake of nutrients in this patient population to enhance their health outcomes and well-being.


Assuntos
Ingestão de Energia , Estado Nutricional , Diálise Renal , Humanos , Estudos Transversais , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Proteínas Alimentares/administração & dosagem , Adulto , Modelos Lineares , Falência Renal Crônica/terapia , Falência Renal Crônica/fisiopatologia , Força da Mão , Registros de Dieta , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/dietoterapia , Insuficiência Renal Crônica/fisiopatologia
5.
Plant Physiol ; 195(3): 2032-2052, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38527791

RESUMO

Auxin, a pivotal regulator of diverse plant growth processes, remains central to development. The auxin-responsive genes auxin/indole-3-acetic acids (AUX/IAAs) are indispensable for auxin signal transduction, which is achieved through intricate interactions with auxin response factors (ARFs). Despite this, the potential of AUX/IAAs to govern the development of the most fundamental biological unit, the single cell, remains unclear. In this study, we harnessed cotton (Gossypium hirsutum) fiber, a classic model for plant single-cell investigation, to determine the complexities of AUX/IAAs. Our research identified 2 pivotal AUX/IAAs, auxin resistant 2 (GhAXR2) and short hypocotyl 2 (GhSHY2), which exhibit opposite control over fiber development. Notably, suppressing GhAXR2 reduced fiber elongation, while silencing GhSHY2 fostered enhanced fiber elongation. Investigating the mechanistic intricacies, we identified specific interactions between GhAXR2 and GhSHY2 with distinct ARFs. GhAXR2's interaction with GhARF6-1 and GhARF23-2 promoted fiber cell development through direct binding to the AuxRE cis-element in the constitutive triple response 1 promoter, resulting in transcriptional inhibition. In contrast, the interaction of GhSHY2 with GhARF7-1 and GhARF19-1 exerted a negative regulatory effect, inhibiting fiber cell growth by activating the transcription of xyloglucan endotransglucosylase/hydrolase 9 and cinnamate-4-hydroxylase. Thus, our study reveals the intricate regulatory networks surrounding GhAXR2 and GhSHY2, elucidating the complex interplay of multiple ARFs in AUX/IAA-mediated fiber cell growth. This work enhances our understanding of single-cell development and has potential implications for advancing plant growth strategies and agricultural enhancements.


Assuntos
Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium , Ácidos Indolacéticos , Proteínas de Plantas , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
6.
BMC Public Health ; 24(1): 836, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500120

RESUMO

BACKGROUND: Hemodialysis patients require a reasonable dietary intake to manage their disease progression effectively. However, there is limited research on these patients' overall dietary knowledge, attitude, and practice (KAP) status. This study aimed to investigate the dietary KAP status and latent profiles in hemodialysis patients and identify sociodemographic and disease-related factors associated with these profiles and dietary practice. METHODS: A multicenter cross-sectional study involving 425 hemodialysis patients was conducted. A dietary KAP questionnaire in hemodialysis patients was used to evaluate the dietary KAP of the patients. A structural equation model was employed to analyze the correlations between dietary knowledge, attitude, and practice. Multiple linear regression analysis was used to identify factors associated with dietary practice scores. Latent profile analysis was conducted to determine the latent profiles of dietary KAP, and binary logistic regression was used to explore the sociodemographic and disease-related characteristics associated with each KAP profile in hemodialysis patients. RESULTS: The normalized average scores for dietary knowledge, attitude, and practice in hemodialysis patients were 0.58, 0.82, and 0.58, respectively. The structural equation model revealed significant positive correlations between dietary knowledge and attitude, and attitude and practice. Attitude played an indirect effect between knowledge and practice. Gender, cerebrovascular disease, and dietary attitude scores were identified as independent influencing factors for dietary practice scores. Two dietary KAP profiles were developed: a profile with general knowledge and attitude but low practice (40.2%) and a profile with general knowledge and attitude and high practice (59.8%). Binary logistic regression analysis indicated gender and monthly income per household significantly predicted membership in each KAP profile. CONCLUSIONS: The dietary practice of hemodialysis patients requires improvement. It is necessary to develop more individualized dietary interventions for these patients. Further exploration is needed to understand the motivation of patients to change their dietary behavior.


Assuntos
Dieta , Estado Nutricional , Humanos , Estudos Transversais , Renda , Características da Família , Conhecimentos, Atitudes e Prática em Saúde
7.
Plant Commun ; 5(7): 100887, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38532644

RESUMO

BEL1-LIKE HOMEODOMAIN (BLH) proteins are known to function in various plant developmental processes. However, the role of BLHs in regulating plant cell elongation is still unknown. Here, we identify a BLH gene, GhBLH1, that positively regulates fiber cell elongation. Combined transcriptomic and biochemical analyses reveal that GhBLH1 enhances linolenic acid accumulation to promote cotton fiber cell elongation by activating the transcription of GhFAD7A-1 via binding of the POX domain of GhBLH1 to the TGGA cis-element in the GhFAD7A-1 promoter. Knockout of GhFAD7A-1 in cotton significantly reduces fiber length, whereas overexpression of GhFAD7A-1 results in longer fibers. The K2 domain of GhKNOX6 directly interacts with the POX domain of GhBLH1 to form a functional heterodimer, which interferes with the transcriptional activation of GhFAD7A-1 via the POX domain of GhBLH1. Overexpression of GhKNOX6 leads to a significant reduction in cotton fiber length, whereas knockout of GhKNOX6 results in longer cotton fibers. An examination of the hybrid progeny of GhBLH1 and GhKNOX6 transgenic cotton lines provides evidence that GhKNOX6 negatively regulates GhBLH1-mediated cotton fiber elongation. Our results show that the interplay between GhBLH1 and GhKNOX6 modulates regulation of linolenic acid synthesis and thus contributes to plant cell elongation.


Assuntos
Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium , Proteínas de Plantas , Gossypium/genética , Gossypium/metabolismo , Gossypium/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido alfa-Linolênico/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Plantas Geneticamente Modificadas/genética
8.
Dev Cell ; 59(6): 723-739.e4, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38359829

RESUMO

The agricultural green revolution spectacularly enhanced crop yield through modification of gibberellin (GA) signaling. However, in cotton, the GA signaling cascades remain elusive, limiting our potential to cultivate new cotton varieties and improve yield and quality. Here, we identified that GA prominently stimulated fiber elongation through the degradation of DELLA protein GhSLR1, thereby disabling GhSLR1's physical interaction with two transcription factors, GhZFP8 and GhBLH1. Subsequently, the resultant free GhBLH1 binds to GhKCS12 promoter and activates its expression to enhance VLCFAs biosynthesis. With a similar mechanism, the free GhZFP8 binds to GhSDCP1 promoter and activates its expression. As a result, GhSDCP1 upregulates the expression of GhPIF3 gene associated with plant cell elongation. Ultimately, the two parallel signaling cascades synergistically promote cotton fiber elongation. Our findings outline the mechanistic framework that translates the GA signal into fiber cell elongation, thereby offering a roadmap to improve cotton fiber quality and yield.


Assuntos
Giberelinas , Reguladores de Crescimento de Plantas , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Cell Rep ; 42(4): 112301, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36952343

RESUMO

Continuous plant growth is achieved by cell division and cell elongation. Brassinosteroids control cell elongation and differentiation throughout plant life. However, signaling cascades underlying BR-mediated cell elongation are unknown. In this study, we introduce cotton fiber, one of the most representative single-celled tissues, to decipher cell-specific BR signaling. We find that gain of function of GhBES1, a key transcriptional activator in BR signaling, enhances fiber elongation. The chromatin immunoprecipitation sequencing analysis identifies a cell-elongation-related protein, GhCERP, whose transcription is directly activated by GhBES1. GhCERP, a downstream target of GhBES1, transmits the GhBES1-mediated BR signaling to its target gene, GhEXPA3-1. Ultimately, GhEXPA3-1 promotes fiber cell elongation. In addition, inter-species functional analysis of the BR-mediated BES1-CERP-EXPA3 signaling cascade also promotes Arabidopsis root and hypocotyl growth. We propose that the BES1-CERP-EXPA3 module may be a broad-spectrum pathway that is universally exploited by diverse plant species to regulate BR-promoted cell elongation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Células Vegetais/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Front Genet ; 14: 1120861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777720

RESUMO

Introduction: Cotton is an important economic crop to provide natural fibers as raw materials to textile industry, and is significantly affected by biotic and abiotic stress during the whole growth stage, in which Verticillium wilt (VW) caused by Verticillium dahliae is one of the most destructive disease to lead to a significant yield reduction. Heat shock proteins (Hsps) are important molecular chaperones, and play crucial roles in plant growth, development, resistance to biotic and abiotic stress. Hsp40 and Hsp70 are two key Hsps in cell chaperone network, however, the function and regulatory mechanism of Hsp40 and Hsp70 members in VW resistance and abiotic stress in cotton are largely unknown. Methods and Results: Herein, a systematic and comprehensive analysis of Hsp40s and Hsp70s in four cotton species of Gossypium arboretum, G. raimondii, G. hirsutum, and G. barbadense were performed. A total of 291 Hsp40s and 171 Hsp70s identified in four Gossypium species. Sequence analysis revealed that all Hsp40 proteins contained J domain that provides the binding sites to Hsp70. Protein-protein interaction prediction analysis displayed that GhHsp40-55 might interact with GhHsp70-2 and GhHsp70-13, suggesting their potential function as protein complex. Promoter cis-acting element analysis demonstrated that multiple cis-elements related to disease and stress response consists in GhHsp40 and GhHsp70 promoters. Further expression analysis showed that eight GhHsp40s (Hsp40-2,4,8,11,20,23,53,55) and seven GhHsp70s (Hsp70-2,3,6,8,13,19,22) were up-regulated after V. dahliae infection. In addition, five GhHsp40s (Hsp40-2,8,11,53,55) and four GhHsp70s (Hsp70-3,6,8,13) were up-regulated after salt treatment, six GhHsp40s (Hsp40-4,11,20,23) and three GhHsp70s (Hsp70-2,8,19) were up-regulated after drought treatment, four GhHsp40s (Hsp40-2,11,20,23) and four GhHsp70s (Hsp70-3,6,19,22) were up-regulated after temperature treatment, suggesting these Hsps have possible important function in the process of abiotic stress response. Discussion: Our results lay a foundation for understanding the function of Hsp40 and Hsp70 in the resistance against V. dahliae and abiotic stress, and elucidating the regulatory mechanism of the protein complex, evolution and molecular mechanism under stress.

12.
Front Plant Sci ; 14: 1309802, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273943

RESUMO

Introduction: As one of the traditional Chinese medicinal herbs that were most generally used, licorice attracts lots of interest due to its therapeutic potential. Authentic response regulators (ARRs) are key factors in cytokinin signal transduction and crucial for plant growth and stress response processes. Nevertheless, the characteristics and functions of the licorice ARR genes are still unknown. Results: In present study, a systematic genome-wide identification and expression analysis of the licorice ARR gene family were conducted and 51 ARR members were identified. Collinearity analysis revealed the significant roles of segmental duplications in the expansion of licorice ARR genes. The cis-acting elements associated with development, stress and phytohormone responses were identified, implying their pivotal roles in diverse regulatory processes. RNA-seq and qRT-PCR results suggested that A-type, but not B-type ARRs were induced by zeatin. Additionally, ARRs participated in diverse abiotic stresses and phytohormones responses. Yeast one-hybrid assay demonstrated that GuARR1, GuARR2, GuARR11, GuARR12, GuARR10-1, GuARR10-2 and GuARR14 were able to bind to the promoter of GuARR8-3, and GuARR1, GuARR12 bound to the GuARR8-1 promoter. GuARR1, GuARR2, GuARR11 and GuARR10-2 bound to the GuARR6-2 promoter as well as GuARR12 and GuARR10-2 bound to the GuARR6-1 promoter. Discussion: Collectively, these findings provide a basis for future ARR genes function investigations, shedding light on the potential medicinal properties and agricultural applications of licorice.

13.
BMC Biol ; 20(1): 254, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357887

RESUMO

BACKGROUND: Heat stress is a major abiotic stress affecting the growth and development of plants, including crop species. Plants have evolved various adaptive strategies to help them survive heat stress, including maintaining membrane stability, encoding heat shock proteins (HSPs) and ROS-scavenging enzymes, and inducing molecular chaperone signaling. Brassinosteroids (BRs) are phytohormones that regulate various aspects of plant development, which have been implicated also in plant responses to heat stress, and resistance to heat in Arabidopsis thaliana is enhanced by adding exogenous BR. Brassinazole resistant 1 (BZR1), a transcription factor and positive regulator of BR signal, controls plant growth and development by directly regulating downstream target genes. However, the molecular mechanism at the basis of BR-mediated heat stress response is poorly understood. Here, we report the identification of a new factor critical for BR-regulated heat stress tolerance. RESULTS: We identified ERF49 in a genetic screen for proteins required for BR-regulated gene expression. We found that ERF49 is the direct target gene of BZR1 and that overexpressing ERF49 enhanced sensitivity of transgenic plants to heat stress. The transcription levels of heat shock factor HSFA2, heat stress-inducible gene DREB2A, and three heat shock protein (HSP) were significantly reduced under heat stress in ERF49-overexpressed transgenic plants. Transcriptional activity analysis in protoplast revealed that BZR1 inhibits ERF49 expression by binding to the promoter of ERF49. Our genetic analysis showed that dominant gain-of-function brassinazole resistant 1-1D mutant (bzr1-1D) exhibited lower sensitivity to heat stress compared with wild-type. Expressing ERF49-SRDX (a dominant repressor reporter of ERF49) in bzr1-1D significantly decreased the sensitivity of ERF49-SRDX/bzr1-1D transgenic plants to heat stress compared to bzr1-1D. CONCLUSIONS: Our data provide clear evidence that BR increases thermotolerance of plants by repressing the expression of ERF49 through BZR1, and this process is dependent on the expression of downstream heat stress-inducible genes. Taken together, our work reveals a novel molecular mechanism mediating plant response to high temperature stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Termotolerância , Brassinosteroides , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Termotolerância/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resposta ao Choque Térmico/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
14.
J Vasc Access ; : 11297298221124874, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36172644

RESUMO

Successful hemodialysis (HD) treatment depends on well-functioning arteriovenous access. Thrombosis and stenosis are the main causes of access failure. The current report describes the successful establishment of an arteriovenous graft for HD using a previously placed stent graft in an HD patient who developed multiple episodes of access stenosis and thrombosis.

15.
Plant Cell ; 34(12): 4816-4839, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36040191

RESUMO

Strigolactones (SLs) are a class of phytohormones that regulate plant shoot branching and adventitious root development. However, little is known regarding the role of SLs in controlling the behavior of the smallest unit of the organism, the single cell. Here, taking advantage of a classic single-cell model offered by the cotton (Gossypium hirsutum) fiber cell, we show that SLs, whose biosynthesis is fine-tuned by gibberellins (GAs), positively regulate cell elongation and cell wall thickness by promoting the biosynthesis of very long-chain fatty acids (VLCFAs) and cellulose, respectively. Furthermore, we identified two layers of transcription factors (TFs) involved in the hierarchical regulation of this GA-SL crosstalk. The top-layer TF GROWTH-REGULATING FACTOR 4 (GhGRF4) directly activates expression of the SL biosynthetic gene DWARF27 (D27) to increase SL accumulation in fiber cells and GAs induce GhGRF4 expression. SLs induce the expression of four second-layer TF genes (GhNAC100-2, GhBLH51, GhGT2, and GhB9SHZ1), which transmit SL signals downstream to two ketoacyl-CoA synthase genes (KCS) and three cellulose synthase (CesA) genes by directly activating their transcription. Finally, the KCS and CesA enzymes catalyze the biosynthesis of VLCFAs and cellulose, respectively, to regulate development of high-grade cotton fibers. In addition to providing a theoretical basis for cotton fiber improvement, our results shed light on SL signaling in plant development at the single-cell level.


Assuntos
Giberelinas , Gossypium , Gossypium/genética , Gossypium/metabolismo , Giberelinas/metabolismo , Regulação da Expressão Gênica de Plantas , Fibra de Algodão , Parede Celular/metabolismo , Celulose/metabolismo
16.
Front Plant Sci ; 13: 882587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651774

RESUMO

Hexokinase (HXK) is involved in hexose phosphorylation, sugar sensing, and signal transduction, all of which regulate plant growth and adaptation to stresses. Gossypium hirsutum L. is one of the most important fiber crops in the world, however, little is known about the HXKs gene family in G. hirsutum L. We identified 17 GhHXKs from the allotetraploid G. hirsutum L. genome (AADD). G. raimondii (DD) and G. arboreum (AA) are the diploid progenitors of G. hirsutum L. and contributed equally to the At_genome and Dt_genome GhHXKs genes. The chromosomal locations and exon-intron structures of GhHXK genes among cotton species are conservative. Phylogenetic analysis grouped the HXK proteins into four and three groups based on whether they were monocotyledons and dicotyledons, respectively. Duplication event analysis demonstrated that HXKs in G. hirsutum L. primarily originated from segmental duplication, which prior to diploid hybridization. Experiments of qRT-PCR, transcriptome and promoter cis-elements demonstrated that GhHXKs' promoters have auxin and GA responsive elements that are highly expressed in the fiber initiation and elongation stages, while the promoters contain ABA-, MeJA-, and SA-responsive elements that are highly expressed during the synthesis of the secondary cell wall. We performed a comprehensive analysis of the GhHXK gene family is a vital fiber crop, which lays the foundation for future studies assessing its role in fiber development.

17.
Plant J ; 111(3): 785-799, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35653239

RESUMO

The BRASSINAZOLE-RESISTANT (BZR) transcription factor is a core component of brassinosteroid (BR) signaling and is involved in the development of many plant species. BR is essential for the initiation and elongation of cotton fibers. However, the mechanism of BR-regulating fiber development and the function of BZR is poorly understood in Gossypium hirsutum L. (cotton). Here, we identified a BZR family transcription factor protein referred to as GhBZR3 in cotton. Overexpression of GhBZR3 in Arabidopsis caused shorter root hair length, hypocotyl length, and hypocotyl cell length, indicating that GhBZR3 negatively regulates cell elongation. Pathway enrichment analysis from VIGS-GhBZR3 cotton plants found that fatty acid metabolism and degradation might be the regulatory pathway that is primarily controlled by GhBZR3. Silencing GhBZR3 expression in cotton resulted in taller plant height as well as longer fibers. The very-long-chain fatty acid (VLCFA) content was also significantly increased in silenced GhBZR3 plants compared with the wild type. The GhKCS13 promoter, a key gene for VLCFA biosynthesis, contains two GhBZR3 binding sites. The results of yeast one-hybrid, electrophoretic mobility shift, and luciferase assays revealed that GhBZR3 directly interacted with the GhKCS13 promoter to suppress gene expression. Taken together, these results indicate that GhBZR3 negatively regulates cotton fiber development by reducing VLCFA biosynthesis. This study not only deepens our understanding of GhBZR3 function in cotton fiber development, but also highlights the potential of improving cotton fiber length and plant growth using GhBZR3 and its related genes in future cotton breeding programs.


Assuntos
Arabidopsis , Fibra de Algodão , Arabidopsis/genética , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
18.
Front Plant Sci ; 13: 920172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769299

RESUMO

Glycyrrhiza uralensis contains many secondary metabolites with a wide range of pharmacological activities. Drought stress acts as a positive regulator to stimulate the production of medicinal active component in G. uralensis, however, the underlying mechanism remains unclear. The aim of this work is to investigate the accumulation and regulatory mechanism of pharmaceutical active ingredients in G. uralensis under drought stress. The materials of the aerial and underground parts of G. uralensis seedlings treated by 10% PEG6000 for 0, 2, 6, 12, and 24 h were used for RNA sequencing and determination of phytohormones and pharmaceutical active ingredients. PEG6000, ibuprofen (IBU), and jasmonic acid (JA) were utilized to treat G. uralensis seedlings for content detection and gene expression analysis. The results showed that, the contents of glycyrrhizic acid, glycyrrhetinic acid, and flavonoids (licochalcone A, glabridin, liquiritigenin, isoliquiritigenin, and liquiritin) were significantly accumulated in G. uralensis underground parts under drought stress. Kyoto Encyclopedia of Genes and Genomes analysis of the transcriptome data of drought-treated G. uralensis indicated that up-regulated differentially expressed genes (UDEGs) involved in glycyrrhizic acid synthesis in the underground parts and flavonoids synthesis in both aerial and underground parts were significantly enriched. Interestingly, the UDEGs participating in jasmonic acid (JA) signal transduction in both aerial and underground parts were discovered. In addition, JA content in both aerial and underground parts under drought stress showed the most significantly accumulated. And drought stress stimulated the contents of JA, glycyrrhizic acid, and flavonoids, coupled with the induced expressions of genes regulating the synthesis and transduction pathway. Moreover, In PEG6000- and JA-treated G. uralensis, significant accumulations of glycyrrhizic acid and flavonoids, and induced expressions of corresponding genes in these pathways, were observed, while, these increases were significantly blocked by JA signaling inhibitor IBU. JA content and expression levels of genes related to JA biosynthesis and signal transduction were also significantly increased by PEG treatment. Our study concludes that drought stress might promote the accumulation of pharmaceutical active ingredients via JA-mediated signaling pathway, and lay a foundation for improving the medicinal component of G. uralensis through genetic engineering technology.

20.
iScience ; 24(7): 102737, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34258563

RESUMO

[This corrects the article DOI: 10.1016/j.isci.2021.102199.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA