Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(10)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895180

RESUMO

Circular RNAs (circRNAs) are a type of non-coding RNA that play a crucial role in the development and lactation of mammary glands in mammals. A total of 107 differentially expressed circRNAs (DE circRNAs) were found, of which 52 were up-regulated and 55 were down-regulated. We also found that DE circRNA host genes were mainly involved in GO terms related to the development process of mammary epithelial cells and KEGG pathways were mostly related to mammary epithelial cells, lactation, and gland development. Protein network analysis found that DE circRNAs can competitively bind to miRNAs as key circRNAs by constructing a circRNA-miRNA-mRNA network. CircRNAs competitively bind to miRNAs (miR-10b-3p, miR-671-5p, chi-miR-200c, chi-miR-378-3p, and chi-miR-30e-5p) involved in goat mammary gland development, mammary epithelial cells, and lactation, affecting the expression of core genes (CDH2, MAPK1, ITGB1, CAMSAP2, and MAPKAPK5). Here, we generated CiMECs and systematically explored the differences in the transcription profile for the first time using whole-transcriptome sequencing. We also analyzed the interaction among mRNA, miRNA, and cirRNA and predicted that circRNA plays an important role in the maintenance of mammary epithelial cells.


Assuntos
MicroRNAs , RNA Circular , Feminino , Animais , RNA Circular/genética , Cabras/genética , Cabras/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Células Epiteliais/metabolismo
2.
Phytother Res ; 37(8): 3617-3630, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37092723

RESUMO

Long-term high-fat diet (HFD) will lead to obesity and their complications. Echinocystic acid (EA), a triterpene, shows anti-inflammatory and antioxidant effects. We predict that EA supplementation can prevent obesity, diabetes, and nonalcoholic steatohepatitis. To test our hypothesis, we investigated the effects of EA supplementation on mice with HFD-induced obesity in vivo and in vitro by adding EA to the diet of mice and the medium of HepG2 cells, the protein target of EA was analyzed by molecular docking. The results showed that EA ameliorated obesity and inhibited blood triglyceride and liver triglyceride concentrations than those in the HFD groups. The data on molecular docking indicated that FABP1 was a potential target of EA. Further experimental results confirmed that EA affected the triglyceride level by regulating the function of FABP1. This study may provide a new potential inhibitor for FABP1 and a new strategy for the treatment of obesity.


Assuntos
Fígado , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Simulação de Acoplamento Molecular , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/metabolismo , Triglicerídeos , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos
3.
Food Funct ; 14(2): 961-977, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36541423

RESUMO

Metabolic associated fatty liver disease is the main cause of chronic liver disease in the world, but there is still no effective treatment. In the search for drugs to treat liver steatosis, we screened 303 natural products using HepG2 cells and discovered that perillartine derived from Perilla frutescens (L.) improved fat deposition as well as glucose homeostasis in hepatocytes. In vitro, perillartine reduced the expression of genes involved in lipid synthesis, lipid transport, and gluconeogenesis in hepatocytes, increased the number of mitochondria, and upregulated the phosphorylation of Akt. In vivo, perillartine reduced body weight gain and the fat rate, improved glucose metabolism and energy balance, and altered the gut microbial composition in mice given a high-fat diet. In addition, RORγ was identified as a possible target of perillartine through pharmacophore screening. Functional studies revealed that the overexpression of RORγ blocked the effects of perillartine, suggesting that it reduced lipid accumulation and regulated glucose metabolism by inhibiting the transcriptional activity of RORγ. Our results provide new information on a natural product inhibitor for RORγ and reveal that perillartine is a new candidate for the treatment of obesity and metabolic associated fatty liver disease.


Assuntos
Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Fígado/metabolismo , Camundongos Obesos , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Glucose/metabolismo , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL
4.
Int J Biol Sci ; 18(15): 5740-5752, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263170

RESUMO

The small intestine is main site of exogenous lipid digestion and absorption, and it is important for lipid metabolic homeostasis. Cell death-inducing DNA fragmentation-factor like effector C (CIDEC) is active in lipid metabolism in tissues other than those in the intestine. We developed small intestine-specific CIDEC (SI-CIDEC-/-) knockout C57BL/6J mice by Cre/LoxP recombination to investigate the in vivo effects of intestinal CIDEC on lipid metabolism. Eight-week-old SI-CIDEC-/- mice fed a high-fat diet for 14 weeks had 15% lower body weight, 30% less body fat mass, and 79% lower liver triglycerides (TG) than wild-type (WT) mice. In addition, hepatic steatosis and fatty liver inflammation were less severe in knockout mice fed a high-fat diet (HFD) compared with wild-type mice fed an HFD. SI-CIDEC-/- mice fed an HFD diet had lower serum TG and higher fecal TG and intestinal lipase activity than wild-type mice. Mechanistic studies showed that CIDEC accelerated phosphatidic acid synthesis by interacting with 1-acylglycerol-3-phosphate-O-acyltransferase to promote TG accumulation. This study identified a new interacting protein and previously unreported CIDEC mechanisms that revealed its activity in lipid metabolism of the small intestine.


Assuntos
Fígado Gorduroso , Metabolismo dos Lipídeos , Obesidade , Proteínas , Animais , Camundongos , Aciltransferases/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Glicerídeos/metabolismo , Intestino Delgado/metabolismo , Lipase/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Fosfatos/metabolismo , Ácidos Fosfatídicos , Triglicerídeos/metabolismo , Proteínas/metabolismo
5.
Food Funct ; 13(13): 7260-7273, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35723416

RESUMO

As living standards improve, obesity has become an increasingly serious health problem. Natural extracts from a wide range of sources are non-toxic and have significant potential as drugs for the prevention and treatment of obesity. We assessed 243 natural small molecules in a HepG2 fat accumulation model and found that epigoitrin (EP) from Radix isatidis reduced intracellular fat deposition, increased short-chain acyl CoA dehydrogenase (SCAD) activity, promoted glucose uptake and glycogen storage, increased ATP production and reduced glutathione (GSH) content, reduced reactive oxygen species (ROS), and enhanced superoxide dismutase (SOD) activity. In a murine high-fat diet model, the addition of EP to the high-fat diet significantly reduced fat deposition, increased glucose tolerance, improved insulin sensitivity, and increased energy expenditure. In conclusion, EP alleviated obesity caused by a high-fat diet and improved disorders of lipid and glucose metabolism.


Assuntos
Transtornos do Metabolismo de Glucose , Resistência à Insulina , Animais , Dieta Hiperlipídica/efeitos adversos , Transtornos do Metabolismo de Glucose/tratamento farmacológico , Transtornos do Metabolismo de Glucose/etiologia , Metabolismo dos Lipídeos , Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Oxazolidinonas
6.
Br J Pharmacol ; 179(11): 2678-2696, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34862596

RESUMO

BACKGROUND AND PURPOSE: Non-alcoholic fatty liver disease (NAFLD) affects over 25% of the general population and lacks an effective treatment. Recent evidence implicates disrupted mitochondrial calcium homeostasis in the pathogenesis of hepatic steatosis. EXPERIMENTAL APPROACH: In this study, mitochondrial calcium uniporter (MCU) was inhibited through classical genetic approaches, viral vectors or small molecule inhibitors in vivo to study its role in hepatic steatosis induced by high-fat diet (HFD). In vitro, MCU was overexpressed or inhibited to change mitochondrial calcium homeostasis, endoplasmic reticulum-mitochondrial linker was adopted to increase mitochondria-associated membranes (MAMs) and MICU1-EF hand mutant was used to decrease the sensitivity of mitochondrial calcium uptake 1 (MICU1) to calcium and block MCU channel. KEY RESULTS: Here, we found that inhibition of liver MCU by AAV virus and classical genetic approaches can prevent HFD-induced liver steatosis. MCU regulates mitochondrial calcium homeostasis and affects lipid accumulation in liver cells. In addition, a HFD in mice enlarged the MAM. The high-calcium environment produced by MAM invalidated the function of MICU1 and led to persistent open of MCU channels. Therefore, it caused mitochondrial calcium overload and liver fat deposition. Inhibition of MAM and MCU alleviated HFD-induced hepatic steatosis. MCU inhibitors (Ru360 and mitoxantrone) can block MCU channels and reduce mitochondrial calcium levels. Intraperitoneal injection of MCU inhibitors (0.01-µM·kg-1 bodyweight) can alleviate HFD-induced hepatic steatosis. CONCLUSION AND IMPLICATIONS: These findings provide molecular insights into the way HFD disrupts mitochondrial calcium homeostasis and identify MCU as a promising drug target for the treatment of hepatic steatosis.


Assuntos
Fígado Gorduroso , Rutênio , Animais , Cálcio/metabolismo , Canais de Cálcio , Proteínas de Ligação ao Cálcio/genética , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/prevenção & controle , Humanos , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mitoxantrona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA