Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 2): 131085, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521335

RESUMO

In contrast to conventional particles characterized by isotropic surfaces, Janus particles possess anisotropic surfaces, resulting in unique physicochemical properties and functional attributes. In recent times, there has been a surge in interest regarding the synthesis of Janus particles using biological macromolecules. Various synthesis techniques have been developed for the fabrication of Janus materials derived from biomass. These methods include electrospinning, freeze-drying, secondary casting film formation, self-assembly technology, and other approaches. In the realm of Janus composite materials, those derived from biomass have found extensive applications in diverse domains including oil-water separation, sensors, photocatalysis, and medical materials. This article provides a systematic introduction to the classification of Janus materials, with a specific focus on various types of biomass-based Janus materials (mainly cellulose-based Janus materials, lignin-based Janus materials and protein-based Janus materials) and the methods used for their preparation. This work will not only deepen the understanding of biomass-based Janus materials, but also contribute to the development of new methods for designing biomass-based Janus structures to optimize biomass utilization.


Assuntos
Celulose , Nanopartículas Multifuncionais , Biomassa , Lignina/química , Tecnologia
2.
Int J Biol Macromol ; 253(Pt 1): 126688, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37666401

RESUMO

Adsorption method is an effective approach to treat wastewater containing methylene blue. Herein, a cost-effective and eco-friendly lignin-based network composite hydrogel adsorbent (PAA@SML) was constructed by using polyacrylic acid (PAA) to crosslink with sulfomethylated lignin (SML) via free radical polymerization for adsorption of methylene blue (MB) from wastewater. The constructed PAA@SML-0.2 exhibited remarkable adsorption performance towards removal of MB, with a maximum theoretical adsorption capacity of 777.1 mg·g-1. The improved efficiency can be attributed to the well-established network structure and abundant hydrophilic functional groups present in the adsorbent, promoting the interaction between methylene blue (MB) molecules and the adsorption sites of the adsorbent. The adsorption process of the adsorbent for MB followed the pseudo-second-order kinetic and the Langmuir isotherm models, which illustrated the adsorption process attributed to monolayer chemisorption. Mechanism investigation confirmed that the adsorption of MB by PAA@SML-0.2 primarily relied on hydrogen bonding and electrostatic interactions. Moreover, the recyclability test demonstrated excellent regeneration usability and stability of PAA@SML-0.2, and the adsorption capacity maintained above 74.0 % after five cycles. This constructed lignin-based network composite hydrogel is considered to have great potential in the treatment of organic dye in wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Lignina/química , Azul de Metileno/química , Adsorção , Hidrogéis , Poluentes Químicos da Água/química , Cinética
3.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373449

RESUMO

The structure of cellulolytic enzyme lignin (CEL) prepared from three bamboo species (Neosinocalamus affinis, Bambusa lapidea, and Dendrocalamus brandisii) has been characterized by different analytical methods. The chemical composition analysis revealed a higher lignin content, up to 32.6% of B. lapidea as compared to that of N. affinis (20.7%) and D. brandisii (23.8%). The results indicated that bamboo lignin was a p-hydroxyphenyl-guaiacyl-syringyl (H-G-S) lignin associated with p-coumarates and ferulates. Advanced NMR analyses displayed that the isolated CELs were extensively acylated at the γ-carbon of the lignin side chain (with either acetate and/or p-coumarate groups). Moreover, a predominance of S over G lignin moieties was found in CELs of N. affinis and B. lapidea, with the lowest S/G ratio observed in D. brandisii lignin. Catalytic hydrogenolysis of lignin demonstrated that 4-propyl-substituted syringol/guaiacol and propanol guaiacol/syringol derived from ß-O-4' moieties, and methyl coumarate/ferulate derived from hydroxycinnamic units were identified as the six major monomeric products. We anticipate that the insights of this work could shed light on the sufficient understanding of lignin, which could open a new avenue to facilitate the efficient utilization of bamboo.


Assuntos
Bambusa , Lignina , Lignina/química , Pirogalol , Bambusa/química , Catálise
4.
iScience ; 26(3): 106187, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36879809

RESUMO

Epoxy resin is widely used in various fields of the national economy due to its excellent chemical and mechanical properties. Lignin is mainly derived from lignocelluloses as one of the most abundant renewable bioresources. Due to the diversity of lignin sources and the complexity as well as heterogeneity of its structure, the value of lignin has not been fully realized. Herein, we report the utilization of industrial alkali lignin for the preparation of low-carbon and environmentally friendly bio-based epoxy thermosetting materials. Specifically, epoxidized lignin with substituted petroleum-based chemical bisphenol A diglycidyl ether (BADGE) in various proportions was cross-linked to fabricate thermosetting epoxies. The cured thermosetting resin revealed enhanced tensile strength (4.6 MPa) and elongation (315.5%) in comparison with the common BADGE polymers. Overall, this work provides a practicable approach for lignin valorization toward tailored sustainable bioplastics in the context of a circular bioeconomy.

5.
Bioresour Technol ; 373: 128752, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36804856

RESUMO

The fermented corn stover residues are abundant renewable lignin-rich bioresources that show great potential to produce aromatic phenols. However, selective catalytic hydrogenolysis of this residual material still remains challenge to obtain high yields. Herein, a novel strategy to produce monophenolic compounds from the fermented stover over a commercial Pd/C catalyst was proposed. Taking the reaction temperature as the key variable, the highest monomer yield was 28.5 wt% at 220 °C in compaction with that of the pristine corn stover (22.8 wt%). The enhanced monophenol yield was due to the higher contents of lignin and less recalcitrance in the fermented stover. Moreover, the van Krevelen diagram revealed a slight selective CO bond scission of lignin macromolecular during fermentation as well as the dehydration and deoxygenation in hydrogenolysis reaction. Overall, this work opens a new avenue for the valorization of lignin through reductive catalytic fractionation of agricultural wastes.


Assuntos
Lignina , Zea mays , Lignina/química , Zea mays/química , Catálise , Fracionamento Químico , Fenóis
6.
J Colloid Interface Sci ; 628(Pt A): 356-365, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932672

RESUMO

Designing interfacial coating with tailored characteristics is a crucial step in regulating the wetting properties of oil/water separation materials; however, the controllable fabrication of multifunctional layer with long-term durability in harsh environments remains challenging. Fabrication of raised dots based on magnetic Fe3O4 particles on micro-nanometer units, inspired by mussel chemistry, under the adhesion behavior of dopamine (DA) self-polymerization covalent deposition of Fe3O4 particles and hydrophobic polydimethylsiloxane (PDMS) modification to synthesize magnetic superhydrophobic cotton composites (Cotton-P). Due to the unique magnetic and superhydrophobic surface composition, the synthetic Cotton-P possesses superhydrophobic (155.4°) and magnetic properties and still exhibits these excellent properties after 10 cycles. In addition, the hydrophobicity of magnetic monolithic cotton is virtually unaffected in harsh environments. The chemical/thermal stability of the Cotton-P composite is improved due to the rigid silane coating on the skeleton. Moreover, the Cotton-P revealed excellent oil/water separation efficiency of over 98 % after 10 cycles. Based on these outstanding properties, Cotton-P has the potential to develop in the treatment of oil-water mixtures.


Assuntos
Silanos , Purificação da Água , Dimetilpolisiloxanos , Dopamina , Interações Hidrofóbicas e Hidrofílicas , Óleos/química
7.
Bioresour Technol ; 362: 127788, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35973566

RESUMO

To boost saccharification and biohydrogen production efficiency from corn straw, Lewis acid enhanced deep eutectic solvent (DES) pretreatment using choline chloride/glycerol was developed. A notable enhancement of the enzymatic hydrolysis efficiency from 26.3 % to 87.0 % was acquired when corn straw was pretreated with aqueous DES at 100 °C for 5 h using 2.0 wt% AlCl3. A maximum biohydrogen yield of 114.8 mL/g total solids (TS) was achieved in the sequential dark fermentation stage, which was 2.1 times higher than that of the raw feedstock (37.1 mL/g TS). The enhanced efficient conversion was ascribed to the effective removal of lignin and hemicellulose, which led to the bio-accessibility of the straw. This work provides new sights for the rational design of efficient AlCl3-aided aqueous DES system toward biohydrogen production from lignocellulosic biomass.


Assuntos
Ácidos de Lewis , Zea mays , Biomassa , Solventes Eutéticos Profundos , Hidrólise , Lignina , Solventes
8.
Int J Biol Macromol ; 218: 285-294, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870625

RESUMO

Excessive discharge of inorganic and organic contaminants in water poses a serious threat to the ecosystems. However, most synthetic adsorbents lack cost-effectiveness in terms of preparation. Interestingly, loofah sponge (LS) was a natural absorbent that could effectively remove pollutions in wastewater, but its adsorption capacity is barely satisfactory. Herein, we present a novel strategy of TEMPO-oxidized loofah sponge (TOLS) to boost the adsorption performance of LS. The batch experiments demonstrated that the maximum removal capacity of TOLS for Pb(II) and methylene blue (MB) was 96.6 mg/g and 10.0 mg/g, respectively, which were 3.5 and 1.3 times that of pristine LS. Notably, the continuous-flow reaction testing of the mixed solution revealed that the elimination rate of Pb(II) and MB was still better than 90 % even after 16 h. Such excellent performance was benefit from the enhanced specific surface area and surface carboxyl content of TOLS. This work offers new insights into the rational development of multifunctional and inexpensive cellulose-based bio-adsorbents for wastewater remediation.


Assuntos
Luffa , Poluentes Químicos da Água , Adsorção , Celulose , Óxidos N-Cíclicos , Ecossistema , Cinética , Chumbo , Azul de Metileno , Águas Residuárias
9.
ChemSusChem ; 15(12): e202200365, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35438245

RESUMO

Lignin-first depolymerization of lignocellulosic biomass into aromatics is of great significance to sustainable biorefinery. However, it remains a challenge, owing to the variance between lignin sources and structures. In this study, ruthenium supported on carbon nanotubes (Ru/CNT) exhibits efficient catalytic activity toward lignin hydrogenolysis to exclusively afford monophenols in high yields. Catalytic tests indicate that the yields of aromatic monomers are related to lignin sources and decrease in the order: hardwoods > herbaceous plants > softwoods. Experimental results demonstrate that the scission of C-O bonds and the high selectivity to monomeric aromatic compounds over the Ru/CNT catalyst are enhanced by avoiding side condensation. Furthermore, the fabricated Ru/CNT shows good reusability and recyclability, applicability, and biomass feedstock compatibility, rendering it a promising candidate for lignin valorization. These findings pave the way for rational design of highly active and stable catalysts to potentially address challenges in lignin chemistry.


Assuntos
Nanotubos de Carbono , Rutênio , Biomassa , Catálise , Lignina/química
10.
Int J Biol Macromol ; 174: 254-262, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33529632

RESUMO

Fabricating lignin-based carbon nanofibers (LCNFs) with the lignin in spent coffee grounds (SCG) as raw material which are disposed as waste amounting to millions tons annual is benefit to promote economy and environmental protection. However, due to the heterogeneity and complex three-dimensional structure, the mechanic property is very poor. In this study, we propose a fractionating pretreatment method to overcome the above problems by regulating the structure of SCG lignin in which high-performance LCNFs were fabricated. On one hand, the linear structure of SCG lignin was optimized to fit the raw material of LCNFs by tuning the content of ß-O-4 and C5-substituted condensed phenolic compounds. On the other hand, the carboxyl as the hydrophilic groups was removed so as to promote the mixing of lignin and polyacrylonitrile (PAN, blending agent) in organic solvents. Additionally, the heterogeneity was reduced by screening large molecular weight SCG lignin with low polydispersity index (PDI). Fortunately, with 1:1 mass ratio of the above fractionated lignin and PAN as substrate, the LCNFs could reach to comparable mechanic properties with those of pure PAN CNFs. This work can provide a new way to not only promote the utilization of SCG lignin but also accelerate the development of LCNFs.


Assuntos
Carbono/química , Café/química , Lignina/isolamento & purificação , Resinas Acrílicas/química , Fracionamento Químico , Resíduos Industriais/análise , Lignina/química , Nanofibras/química , Temperatura
11.
Nat Commun ; 12(1): 416, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462206

RESUMO

C-lignin is a homo-biopolymer, being made up of caffeyl alcohol exclusively. There is significant interest in developing efficient and selective catalyst for depolymerization of C-lignin, as it represents an ideal feedstock for producing catechol derivatives. Here we report an atomically dispersed Ru catalyst, which can serve as an efficient catalyst for the hydrogenolysis of C-lignin via the cleavage of C-O bonds in benzodioxane linkages, giving catechols in high yields with TONs up to 345. A unique selectivity to propenylcatechol (77%) is obtained, which is otherwise hard to achieve, because this catalyst is capable of hydrogenolysis rather than hydrogenation. This catalyst also demonstrates good reusability in C-lignin depolymerization. Detailed investigations by model compounds concluded that the pathways involving dehydration and/or dehydrogenation reactions are incompatible routes; we deduced that caffeyl alcohol generated via concurrent C-O bonds cleavage of benzodioxane unit may act as an intermediate in the C-lignin hydrogenolysis. Current demonstration validates that atomically dispersed metals can not only catalyze small molecules reactions, but also drive the transformation of abundant and renewable biopolymer.


Assuntos
Catecóis/química , Lignina/química , Rutênio/química , Catálise
12.
Front Bioeng Biotechnol ; 9: 803138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004655

RESUMO

A novel cascade biorefinery strategy toward phenolic monomers and carbon quantum dots (CQDs) is proposed here via coupling catalytic hydrogenolysis and hydrothermal treatment. Birch wood was first treated with catalytic hydrogenolysis to afford a high yield of monomeric phenols (44.6 wt%), in which 4-propanol guaiacol (10.2 wt%) and 4-propanol syringol (29.7 wt%) were identified as the two major phenolic products with 89% selectivity. An available carbohydrate pulp retaining 82.4% cellulose and 71.6% hemicellulose was also obtained simultaneously, which was further used for the synthesis of CQDs by a one-step hydrothermal process. The as-prepared CQDs exhibited excellent selectivity and detection limits for several heavy metal cations, especially for Fe3+ ions in an aqueous solution. Those cost-efficient CQDs showed great potential in fluorescent sensor in situ environmental analyses. These findings provide a promising path toward developing high-performance sensors on environmental monitoring and a new route for the high value-added utilization of lignocellulosic biomass.

13.
ChemSusChem ; 13(17): 4548-4556, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32419330

RESUMO

Lignin depolymerization into aromatic monomers with high yields and selectivity is essential for the economic feasibility of biorefinery. However, the relationship between lignin structure and its reactivity for upgradeability is still poorly understood, in large part owing to the difficulty in quantitative characterization of lignin structural properties. To overcome these shortcomings, advanced NMR technologies [2D HSQC (heteronuclear single quantum coherence) and 31 P] were used to accurately quantify lignin functionalities. Diverse lignin samples prepared from Eucalyptus grandis with varying ß-O-4 linkages were subjected to Pd/C-catalyzed hydrogenolysis for efficient C-O bond cleavage to achieve theoretical monomer yields. Strong correlations were observed between the yield of monomeric aromatic compounds and the structural features of lignin, including the contents of ß-O-4 linkages and phenolic hydroxyl groups. Notably, a combined yield of up to 44.1 wt % was obtained from ß-aryl ether rich in native lignin, whereas much lower yields were obtained from technical lignins low in ß-aryl ether content. This work quantitatively demonstrates that the lignin reactivity for acquiring aromatic monomer yields varies depending on the lignin fractionation processes.

14.
Biotechnol Biofuels ; 13: 2, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31921351

RESUMO

BACKGROUND: Lignocellulosic biomass, which is composed of cellulose, hemicellulose and lignin, represents the most abundant renewable carbon source with significant potential for the production of sustainable chemicals and fuels. Current biorefineries focus on cellulose and hemicellulose valorization, whereas lignin is treated as a waste product and is burned to supply energy to the biorefineries. The depolymerization of lignin into well-defined mono-aromatic chemicals suitable for downstream processing is recognized increasingly as an important starting point for lignin valorization. In this study, conversion of all three components of Eucalyptus grandis into the corresponding monomeric chemicals was investigated using solid and acidic catalyst in sequence. RESULTS: Lignin was depolymerized into well-defined monomeric phenols in the first step using a Pd/C catalyst. The maximum phenolic monomers yield of 49.8 wt% was achieved at 240 °C for 4 h under 30 atm H2. In the monomers, 4-propanol guaiacol (12.9 wt%) and 4-propanol syringol (31.9 wt%) were identified as the two major phenolic products with 90% selectivity. High retention of cellulose and hemicellulose pulp was also obtained, which was treated with FeCl3 catalyst to attain 5-hydroxymethylfurfural, levulinic acid and furfural simultaneously. The optimal reaction condition for the co-conversion of hemicellulose and cellulose was established as 190 °C and 100 min, from which furfural and levulinic acid were obtained in 55.9% and 73.6% yields, respectively. Ultimately, 54% of Eucalyptus sawdust can be converted into well-defined chemicals under such an integrated biorefinery method. CONCLUSIONS: A two-step process (reductive catalytic fractionation followed by FeCl3 catalysis) allows the fractionation of all the three biopolymers (cellulose, hemicellulose, and lignin) in Eucalyptus biomass, which provides a promising strategy to make high-value chemicals from sustainable biomass.

15.
Sci Total Environ ; 685: 847-855, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31390714

RESUMO

A low-cost and well-separated approach is introduced for adsorption pollutants in water. Chemical modified lignin is prepared with diethylenetriamine to enhance the reaction activities, then used to prepare lignin derivate magnetic hydrogel microspheres (LDMHMs) via blending with Fe3O4. The LDMHMs are successful prepared by the determination of FT-IR data, and the morphology shown from SEM imagine indicates the LDMHMs are in nanosized. The prepared LDMHMs are used as adsorbents for organic dyes, such as methylene blue (MB), methyl orange (MO) and malachite green (MG), the plateaus data are 43 mg/g, 39 mg/g and 155 mg/g, respectively. For inorganic pollutions, such as Pb2+, Hg2+ and Ni2+, the plateaus data are 33 mg/g, 55 mg/g and 23 mg/g, respectively. The adsorption data of unmodified lignin are 2.6 mg/g (Pb2+), 3.3 mg/g (Hg2+), 2.1 mg/g (Ni2+), 8 mg/g (MB), 10 mg/g (MG) and 2 mg/g (MO) in the same condition. The adsorbents are recycled by magnetic separation, regenerating from acid condition and reused for multiple cycles. The regeneration ratios are all above 90%, indicating a highly reusability and further reducing the cost of the treatment.


Assuntos
Corantes/química , Hidrogéis/química , Lignina/química , Microesferas , Poluentes Químicos da Água/química , Purificação da Água/métodos
16.
Bioresour Technol ; 285: 121335, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31003204

RESUMO

Reductive catalytic fractionation (RCF) has emerged as a new biorefinery paradigm for the fractionation and sequential utilization of entire components of biomass. Herein, we investigated the RCF of bamboo, a highly abundant herbaceous feedstock, in the presence of Pd/C catalyst. The lignin fraction in bamboo was preferentially depolymerized into well-defined low-molecular-weight phenols, with leaving carbohydrates pulp as a solid residue. In the soluble fraction, four major phenolic compounds, e.g., methyl coumarate/ferulate derived from hydroxycinnamic units and propanol guaiacol/syringol derived from ß-O-4 units, were generated up to 41.7 wt% yield based on original lignin content. In the insoluble fraction, the carbohydrates of bamboo were recovered with high retentions of cellulose (68%) and hemicellulose (49%), which upon treatment with enzyme gave glucose (90%) and xylose (85%). Overall, the three major components of bamboo could efficient to be fractionated and converted into useful platform chemicals on the basis of this study.


Assuntos
Celulose , Lignina , Biomassa , Catálise , Fracionamento Químico
17.
ChemSusChem ; 11(13): 2114-2123, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29660264

RESUMO

Lignin is the largest renewable resource of bioaromatics, and the catalytic fragmentation of lignin into phenolic monomers is increasingly recognized as an important starting point for lignin valorization. Herein, we report that ZnMoO4 supported on MCM-41 can catalyze the fragmentation of biorefinery technical lignin, enzymatic mild acidolysis lignin, and native lignin derived from corncob to yield lignin oily products that contain 15-37.8 wt % phenolic monomers, in which the high selectivities towards methyl coumarate (1) and methyl ferulate (2) were obtained (up to 78 %). The effects of some key parameters such as the influence of the solvent, reaction temperature, time, H2 pressure, and catalyst dosage were examined in view of activity and selectivity. The loss of Zn from the catalyst is discussed as the primary cause of deactivation, and the catalytic activity and selectivity can be well preserved in at least six runs by thermal calcination. The high selectivity to 1 and 2 leads to their easy separation and purification from lignin oily product to provide sustainable monomers for the preparation of functional polyether esters and polyesters.

18.
ChemSusChem ; 11(9): 1474-1478, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29575709

RESUMO

The search for nonprecious-metal-based catalysts for the synthesis of γ-valerolactone (GVL) through hydrogenation of levulinic acid and its derivatives in an efficient fashion is of great interest and importance, as GVL is an important a sustainable liquid. We herein report a pincer iron complex that can efficiently catalyze the hydrogenation of levulinic acid and methyl levulinate into GVL, achieving a turnover number of up to 23 000 and a turnover frequency of 1917 h-1 . This iron-based catalyst also enabled the formation of GVL from various biomass-derived carbohydrates in aqueous solution, thus paving a new way toward a renewable chemical industry.

19.
ChemSusChem ; 11(7): 1157-1162, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29484826

RESUMO

The search for efficient routes for the production of fructose from biomass-derived glucose is of great interest and importance, as fructose is a highly attractive substrate in the conversion of cellulosic biomass into biofuels and chemicals. In this study, a one-pot, multistep procedure involving enzyme-catalyzed oxidation of glucose at C2 and Ni/C-catalyzed hydrogenation of d-glucosone at C1 selectively gives fructose in 77 % yield. Starting from upstream substrates such as α-cellulose and starch, fructose was also generated with similar efficiency and selectivity by the combination of enzymatic and heterogeneous catalysis. This method constitutes a new means of preparing fructose from biomass-derived substrates in an efficient fashion.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Enzimas Imobilizadas/metabolismo , Frutose/metabolismo , Glucose/metabolismo , Biomassa , Catálise , Celulose/metabolismo , Temperatura Alta , Isomerismo , Pressão
20.
Org Biomol Chem ; 15(16): 3466-3471, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28368057

RESUMO

A new family of protic NHC Ru complexes ligated with a phosphine-tethered imidazole moiety were prepared, which can act as excellent catalysts for acceptorless dehydrogenation of secondary alcohols and dehydrogenative coupling of primary and secondary alcohols, thus leading to the formation of a variety of carbonyl compounds with release of H2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA