Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biomed Pharmacother ; 178: 117215, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39084076

RESUMO

Deapioplatycodin D (DPD) is a triterpenoid saponin extracted from the root of Platycodon grandiflorum, which is a common source of medicine and food. Platycodon grandiflorum saponins have anti-inflammatory, antioxidative, antitumor, and immunity-promoting effects. However, the effect of DPD on hepatocellular carcinoma (HCC) cells has not been reported. The purpose of this study was to explore the cytotoxic effects and molecular mechanisms of DPD on HCC cells. Our study revealed that DPD significantly inhibits the proliferation of HCC, as demonstrated by the CCK-8 assay, and then we analyzed the inhibitory effects and pathways of DPD on HCC cells by Western blot and immunofluorescence assay, and found that DPD could increase the changes of autophagy-related protein levels, but had no significant effect on the expression of apoptosis-related proteins, and induced cell senescence. Then, transcriptomics analysis revealed that differential genes were significantly enriched in cell senescence and autophagy pathways and significant expression of mitochondrial autophagy-related gene BNIP3L and senescence-related gene P21. Subsequently, autophagy and cell senescence were analyzed using gene silencing, and it was found that DPD caused mitochondrial damage and promoted reactive oxygen species production, leading to the inhibition of autophagic fluxes and mitophagy via BNIP3L, and that DPD also mediated cell senescence via P21. Here, we found that autophagy promoted cell senescence, resulting in the inhibition of HCC cell proliferation. Similar results were obtained in the tumor-bearing model in vivo. In conclusion, DPD induces incomplete mitophagy and cell senescence in HCC cells, thereby inhibiting HCC cell proliferation. DPD is a potential new strategy for treating HCC.

2.
FASEB J ; 38(3): e23450, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294796

RESUMO

Oncolytic virus immunotherapy as a new tumor therapy has made remarkable achievements in clinical practice. And metabolic reprogramming mediated by oncolytic virus has a significant impact on the immune microenvironment. This review summarized the reprogramming of host cell glucose metabolism, lipid metabolism, oxidative phosphorylation, and glutamine metabolism by oncolytic virus and illustrated the effects of metabolic reprogramming on the immune microenvironment. It was found that oncolytic virus-induced reprogramming of glucose metabolism in tumor cells has both beneficial and detrimental effects on the immune microenvironment. In addition, oncolytic virus can promote fatty acid synthesis in tumor cells, inhibit oxidative phosphorylation, and promote glutamine catabolism, which facilitates the anti-tumor immune function of immune cells. Therefore, targeted metabolic reprogramming is a new direction to improve the efficacy of oncolytic virus immunotherapy.


Assuntos
Glutamina , Vírus Oncolíticos , Reprogramação Metabólica , Adipogenia , Glucose
3.
Viruses ; 15(9)2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37766224

RESUMO

Midges are widely distributed globally and can transmit various human and animal diseases through blood-sucking. As part of this study, 259,300 midges were collected from four districts in Yunnan province, China, to detect the viral richness and diversity using metavirome analysis techniques. As many as 26 virus families were detected, and the partial sequences of bluetongue virus (BTV), dengue virus (DENV), and Getah virus (GETV) were identified by phylogenetic analysis and PCR amplification. Two BTV gene fragments, 866 bps for the VP2 gene of BTV type 16 and 655 bps for the VP5 gene of BTV type 21, were amplified. The nucleotide sequence identities of the two amplified BTV fragments were 94.46% and 98.81%, respectively, with two classical BTV-16 (GenBank: JN671907) and BTV-21 strains (GenBank: MK250961) isolated in Yunnan province. Furthermore, the BTV-16 DH2021 strain was successfully isolated in C6/36 cells, and the peak value of the copy number reached 3.13 × 107 copies/µL after five consecutive BHK-21 cell passages. Moreover, two 2054 bps fragments including the E gene of DENV genotype Asia II were amplified and shared the highest identity with the DENV strain isolated in New Guinea in 1944. A length of 656 bps GETV gene sequence encoded the partial capsid protein, and it shared the highest identity of 99.68% with the GETV isolated from Shandong province, China, in 2017. Overall, this study emphasizes the importance of implementing prevention and control strategies for viral diseases transmitted by midges in China.


Assuntos
Alphavirus , Vírus Bluetongue , Animais , Humanos , China/epidemiologia , Filogenia , Ásia , Proteínas do Capsídeo/genética
6.
Viruses ; 15(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36992334

RESUMO

Japanese encephalitis virus (JEV), which uses a mosquito primary vector and swine as a reservoir host, poses a significant risk to human and animal health. JEV can be detected in cattle, goats and dogs. A molecular epidemiological survey of JEV was conducted in 3105 mammals from five species, swine, fox, racoon dog, yak and goat, and 17,300 mosquitoes from 11 Chinese provinces. JEV was detected in pigs from Heilongjiang (12/328, 3.66%), Jilin (17/642, 2.65%), Shandong (14/832, 1.68%), Guangxi (8/278, 2.88%) and Inner Mongolia (9/952, 0.94%); in goats (1/51, 1.96%) from Tibet; and mosquitoes (6/131, 4.58%) from Yunnan. A total of 13 JEV envelope (E) gene sequences were amplified in pigs from Heilongjiang (5/13), Jilin (2/13) and Guangxi (6/13). Swine had the highest JEV infection rate of any animal species, and the highest infection rates were found in Heilongjiang. Phylogenetic analysis indicated that the predominant strain in Northern China was genotype I. Mutations were found at residues 76, 95, 123, 138, 244, 474 and 475 of E protein but all sequences had predicted glycosylation sites at 'N154. Three strains lacked the threonine 76 phosphorylation site from non-specific (unsp) and protein kinase G (PKG) site predictions; one lacked the threonine 186 phosphorylation site from protein kinase II (CKII) prediction; and one lacked the tyrosine 90 phosphorylation site from epidermal growth factor receptor (EGFR) prediction. The aim of the current study was to contribute to JEV prevention and control through the characterization of its molecular epidemiology and prediction of functional changes due to E-protein mutations.


Assuntos
Culicidae , Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Japonesa (Subgrupo) , Encefalite Japonesa , Bovinos , Animais , Humanos , Suínos , Cães , Vírus da Encefalite Japonesa (Espécie)/genética , Filogenia , China/epidemiologia , Genótipo , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/veterinária , Treonina/genética , Mamíferos
7.
Front Cell Infect Microbiol ; 12: 960507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304937

RESUMO

To exploit the Rhinolophus sinicus-specific virome, 29 Rhinolophus sinicus were gathered in Lincang, China. Enriched viral sequences of 22 virus families were acquired by metavirome techniques. Hereby, the part of virome in Rhinolophus sinicus, including Chikungunya virus (CHIKV), Getah virus, and Japanese encephalitis virus (JEV) were validated by PCR. Five CHIKV viral sequences were amplified, among which CHIKV-China/B2016C-1 shared the highest homology to CHIKV isolated from Italy in 2007, with the genotype as African ECS. Eight JEV viral sequences were amplified, of which JEV-China/B2016E-1 shared the highest homology with at least 91.3% nt identity with the JEV sequence found in South Korea in 1988 and was classified as genotype III. Notably, JEV was isolated for the first time in Rhinolophus sinicus. The newly isolated JEV-China/B2016-1 could increase infectivity while passaging in Vero cells from BHK-21 cells. Overall, the research sheds insight into the diversity and viral susceptibility dynamics of the virome in Rhinolophus sinicus and reveals new light on the ecology of other important viral hosts.


Assuntos
Quirópteros , Culicidae , Vírus da Encefalite Japonesa (Espécie) , Vírus , Animais , Chlorocebus aethiops , Viroma , Células Vero , Filogenia , Vírus da Encefalite Japonesa (Espécie)/genética , Genótipo , China
8.
Cell Commun Signal ; 20(1): 134, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050738

RESUMO

BACKGROUND: Apoptin, as a tumor-specific pro-apoptotic protein, plays an important anti-tumoral role, but its mechanism of autophagy activation and the interaction between autophagy and apoptosis have not been accurately elucidated. Here, we studied the mechanism of apoptin-induced apoptosis and autophagy and the interaction between two processes. METHODS: Using crystal violet staining and the CCK-8 assay, we analyzed the effect of apoptin in the inhibition of liver cancer cells in vitro and analyzed the effect of inhibiting liver cancer in vivo by establishing a nude mouse tumor model. Flow cytometry and fluorescence staining were used to analyze the main types of apoptin-induced apoptosis and autophagy. Subsequently, the relationship between the two events was also analyzed. Flow cytometry was used to analyze the effect of ROS on apoptin-mediated apoptosis and autophagy mediated by apoptin. The effect of ROS on two phenomena was analyzed. Finally, the role of key genes involved in autophagy was analyzed using gene silencing. RESULTS: The results showed that apoptin can significantly increase the apoptosis and autophagy of liver cancer cells, and that apoptin can cause mitophagy through the increase in the expression of NIX protein. Apoptin can also significantly increase the level of cellular ROS, involved in apoptin-mediated autophagy and apoptosis of liver cancer cells. The change of ROS may be a key factor causing apoptosis and autophagy. CONCLUSION: The above results indicate that the increase in ROS levels after apoptin treatment of liver cancer cells leads to the loss of mitochondrial transmembrane potential, resulting in endogenous apoptosis and mitophagy through the recruitment of NIX. Therefore, ROS may be a key factor connecting endogenous apoptosis and autophagy induced by apoptin in liver cancer cells. Video abstract.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Apoptose , Proteínas do Capsídeo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Mitofagia , Espécies Reativas de Oxigênio
9.
Front Cell Infect Microbiol ; 12: 874003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846764

RESUMO

Swab samples were collected from 34 pangolins in Guangxi Province, China. Metavirome sequencing and bioinformatics approaches were undertaken to determine the abundant viral sequences in the viromes. The results showed that the viral sequences belong to 24 virus taxonomic families. To verify the results, PCR combined with phylogenetic analysis was conducted. Some viral sequences including Japanese encephalitis virus (JEV), Getah virus (GETV), and chikungunya virus (CHIKV) were detected. On the basis of the metavirome analysis, seven segments belonging to JEV were further identified through PCR amplification. Sequence comparison showed that, among seven sequences, JEV-China/P2020E-1 displayed the highest nucleotide (80.6%), with the JEV isolated in South Korea, 1988, and all of which belonging to genotype III. Seven CHIKV sequences were detected, with the highest homology (80.6%) to the Aedes africanus in Côte d'Ivoire, 1993. Moreover, passage from BHK-21 to Vero cells makes the newly isolated CHIKV-China/P2020-1 more contagious. In addition, the newly verified GETV sequences shared 86.4% identity with the 1955 GETV isolated from Malaysia. Some sudden and recurrent viruses have also been observed from the virome of pangolin in Guangxi Province, China; hence, dissemination tests will be implemented in the future.


Assuntos
Alphavirus , Culicidae , Vírus da Encefalite Japonesa (Espécie) , Alphavirus/genética , Animais , China , Chlorocebus aethiops , Vírus da Encefalite Japonesa (Espécie)/genética , Humanos , Pangolins , Filogenia , Células Vero , Viroma
10.
Front Cell Infect Microbiol ; 12: 938576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846772

RESUMO

To explore the Culex tritaeniorhynchuses-specific virome, 6400 C. tritaeniorhynchuses were collected in Honghe autonomous prefecture, China. Abundant virus sequences were obtained from 28 viral families using metavirome sequencing. Herein, several viruses in C. tritaeniorhynchuses virome were verified using the PCR technique, which covers Japanese encephalitis virus (JEV), Getah virus, and even Chikungunya virus (CHIKV). Seven JEV gene sequences were amplified successfully, of which JEV-China/CT2016E-1 shared the highest homology with the known JEV sequence isolated in Korea, 1946, with at least 96.1% nucleotide (nt) identity, which belonged to genotype III. Nine CHIKV gene sequences were amplified, which shared the highest with at least 93.0% nt identity with CHIKV from Thailand isolated in 2007, which was assigned to genotype Asian. Remarkably, CHIKV was isolated from C. tritaeniorhynchus in China for the first time. It was initially confirmed that the isolated virus CHIKV-China/CT2016-1 may increase infectivity after passaging in Vero cells from BHK-21 cells. Collectively, our study reveals the diversity, properties, and potential virus susceptibility dynamics of the C. tritaeniorhynchus virome and sheds new perspectives on the viral ecology in other important biological vectors.


Assuntos
Vírus Chikungunya , Culex , Vírus da Encefalite Japonesa (Espécie) , Vírus , Animais , Vírus Chikungunya/genética , China , Chlorocebus aethiops , Humanos , Mosquitos Vetores , Filogenia , Células Vero
11.
Front Cell Infect Microbiol ; 12: 860559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321314

RESUMO

Human adenovirus (HAdV) has a worldwide distribution and remains a major pathogen that leads to infections of the respiratory tract. No specific treatments or vaccines are yet available for HAdV infection. Sargassum fusiforme, an edible seaweed, has attracted a lot of attention for its various bioactivities. S. fusiforme has been reported to exhibit antiviral activity. However, research studies about its anti-HAdV activity are few. In this research, we found that S. fusiforme had low cytotoxicity and possessed anti-human adenovirus type 7 (HAdV7) activity in vitro, and the most effective ingredient was alginate. The time of addition assay demonstrated inhibitory effects that were observed in all life stages of the virus. In addition, we observed that the antiviral activity of alginate against HAdV7 infection might be closely related to the endoplasmic reticulum stress (ERS) pathway. Taken together, these results suggest that S. fusiforme extracts have potential application in the prevention and treatment of HAdV infection.


Assuntos
Sargassum , Vírus , Adenoviridae , Antivirais/metabolismo , Antivirais/farmacologia , Humanos , Sargassum/metabolismo
12.
Front Cell Infect Microbiol ; 12: 849662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223559

RESUMO

We collected 5,500 mosquitoes belonging to six species in three locations in China. Their viromes were tested using metagenomic sequencing and bioinformatic analysis. The affluent viral sequences that were detected and annotated belong to 22 viral taxonomic families. Then, PCR was performed to confirm the results, followed by phylogenetic analysis. Herein, part of mosquito virome was identified, including chikungunya virus (CHIKV), Getah virus (GETV), and Ross river virus (RRV). After metagenomic analysis, seven CHIKV sequences were verified by PCR amplification, among which CHIKV-China/YN2018-1 had the highest homology with the CHIKV isolated in Senegal, 1983, with a nucleotide (nt) identity of at least 81%, belonging to genotype West Africa viral genes. Five GETV sequences were identified, which had a high homology with the GETV sequences isolated from Equus caballus in Japan, 1978, with a (nt) identity of at least 97%. The newly isolated virus CHIKV-China/YN2018-1 became more infectious after passage of the BHK-21 cell line to the Vero cell line. The newly identified RRV gene had the highest homology with the 2006 RRV isolate from Australia, with a (nt) identity of at least 94%. In addition, numerous known and unknown viruses have also been detected in mosquitoes from Yunnan province, China, and propagation tests will be carried out.


Assuntos
Febre de Chikungunya , Culicidae , Vírus , Animais , China , Cavalos , Humanos , Filogenia , Ross River virus/genética , Togaviridae , Viroma , Vírus/genética
13.
Virus Res ; 291: 198177, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33038460

RESUMO

Seneca Valley virus (SVV) is a novel Picornaviridae that is closely associated with porcine idiopathic vesicular disease (PIVD). Here, a novel SVV strain (CH-GX-01-2019) was detected and isolated from swine in Guangxi Province, China. The complete genomic sequence of CH-GX-01-2019 exhibited 93.3-98.9 % identify with other SVV isolates at the nucleotide level. CH-GX-01-2019 showed the highest level of similarity (98.9 %) with Vietnamese strains. And CH-GX-01-2019 exhibited two consecutive amino acid mutations in VP1 gene. Phylogenetic analysis based on the complete genome and the VP1 gene showed that Chinese SVV isolates can be divided into three clusters. We analyzed the geographical distributions of SVV strains in China and found that the epidemiology of SVV in China is complicated; most strains are distributed predominantly in south and central China. Between 2015 and 2019, the dominant epidemic SVV isolates in China have changed from clusters 1 and 3 to cluster 2. CH-GX-01-2019 (cluster 3) is a recombinant strain from Colombia-2016 (cluster 2) and HB-CH-2016 (cluster 1). Our findings will enhance our understanding of the prevalence and genetic variation of SVV in the swine herds of China and provide important insights into the molecular epidemiology of SVV.


Assuntos
Evolução Molecular , Filogenia , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/veterinária , Picornaviridae/genética , Doenças dos Suínos/epidemiologia , Animais , Linhagem Celular , China/epidemiologia , Cricetinae , Fazendas , Genoma Viral , Gado/virologia , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , Infecções por Picornaviridae/virologia , Prevalência , Recombinação Genética , Suínos , Doenças dos Suínos/virologia , Sequenciamento Completo do Genoma
14.
Virus Res ; 276: 197807, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31707001

RESUMO

The purpose of this study was to knock out two non-essential gene fragments (TC7L-TK2L and TJ2R) related to virulence, immunomodulation, and host range in the vaccinia virus Tian Tan strain (VTT), and combining with double-label screening and exogenous screening marker knockout techniques to construct attenuated strains with multiple gene deletions(rVTT-TC-TJ). The shuttle plasmids pSK-TC and pSK-TJ were constructed by designing 2 pairs of recombinant arms, combined with poxvirus early and late complex strong promoter pE/L and exogenous screening marker enhanced green fluorescent protein(EGFP). The results showed that knocking out the two gene fragments does not affect the replication ability of the virus and displays a good genetic stability. Furthermore, a series of in vivo and in vitro experiments demonstrate that although virulence of rVTT-TC-TJ is attenuated significantly, high immunogenicity was maintained. These results support the potential development of rVTT-TC-TJ as a safe viral vector or vaccine.


Assuntos
Deleção de Genes , Vaccinia virus/genética , Virulência/genética , Animais , Linhagem Celular , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Vaccinia virus/patogenicidade , Vaccinia virus/fisiologia , Replicação Viral
15.
Vet Microbiol ; 239: 108490, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31767075

RESUMO

Highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS) poses a significant threat to the pig industry, for which vaccination is considered to be an effective means of prevention and control. Here, we developed two recombinant Newcastle disease virus (NDV) LaSota-vectored PRRS candidate vaccines, rLaSota-GP5 and rLaSota-GP3-GP5, using reverse genetic techniques. The two recombinant viruses exhibited a high degree of genetic stability after 10 successive generations in chicken embryos. There was no significant difference in pathogenicity compared with the rLaSota parent strain in poultry, mice and pigs. The recombinant viruses could not be detected in the feeding environment of immunized pigs, but could be detected in the organs and tissues of pigs for no more than 10 days after immunization. Importantly, in contrast to rLaSota-GP5, rLaSota-GP3-GP5 elicited both significant humoral and cellular immune responses in pigs. In particular, the neutralizing antibody titer in the rLaSota-GP3-GP5 group was 1.51 times significantly higher than that of the commercial vaccine group at 42 days post-immunization. At the same time, there was significant difference in the level of IFN-γ between the rLaSota-GP3-GP5 group and the commercial vaccine group. Furthermore, the viral load in the organs and tissues of rLaSota-GP3-GP5-immunized pigs was substantially lower than that of unimmunized pigs after being challenged with HP-PRRS virus GD strain. These results suggest that rLaSota-GP3-GP5 is a safe and promising candidate vaccine, and there is potential for further development of a recombinant virus vaccine for PRRS using NDV.


Assuntos
Vírus da Doença de Newcastle/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Suínos
16.
Vaccine ; 37(37): 5588-5595, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31399273

RESUMO

For decades, an on-going concerted effort has been made to develop a universal DNA vaccine to combat the looming threat of a potential outbreak of the emerging Japanese encephalitis virus (JEV) infection. However, effective strategies are urgently required to counter poor immunogenicity and insufficient long-term protection. Recent reports have confirmed the critical role of autophagy in antigen presentation, long-term immune memory and immune responses against JEV. In this study, JEV prM and E protein with strong immunogenicity were fused with microtubule-associated protein 1 light chain 3 (LC3) encoding gene to construct an autophagy-mediated pJME-LC3 DNA vaccine. Researches indicated significant increase of autophagosomes or LC3 Ⅱ expression in pJME-LC3 transfected cells. Furthermore, prME-LC3 fused protein was observed co-localized with GFP-LC3 to autophagosomes, which means it was successfully targeted to autophagosomes. After immunizing with pJME-LC3, mice were detected highest proportion of CD3+CD8+ T lymphocytes, CD8+ effector memory T cells (TEMs) and JEV specific cytotoxic T lymphocyte (CTL) activity to eliminate JEV. pJME-LC3 also enhanced IgG2a antibody in serum and cytokines IFN-γ, IL-12 produced by splenocytes, thus skew toward Th1 type immune response by activating the JAK2/STAT1 signaling pathway and upregulating expression of transcription factor T-bet. Notably, mice immunized with pJME-LC3 showed highest survival rate and long-lasting neutralizing antibody when challenged with virulent JEV, which were consistent with augment in percentage of CD4+ central memory T cells (TCMs). In brief, our studies suggested that autophagy can be used as a optimization strategy to enhance JEV specific immune response and long-term immune memory. Our attempt will contribute towards future efforts to develop an efficacious JEV vaccine.


Assuntos
Autofagia/imunologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/imunologia , Encefalite Japonesa/prevenção & controle , Vacinas contra Encefalite Japonesa/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Células CHO , Linhagem Celular , Cricetulus , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite Japonesa/metabolismo , Feminino , Imunização , Imunogenicidade da Vacina , Imunomodulação , Vacinas contra Encefalite Japonesa/administração & dosagem , Camundongos , Proteínas Recombinantes de Fusão , Vacinas de DNA/administração & dosagem
17.
Artigo em Inglês | MEDLINE | ID: mdl-30406038

RESUMO

More than 6,000 mosquitoes of six species from six sites were collected and tested for their virome using metagenomics sequencing and bioinformatic analysis. The identified viral sequences belonged to more than 50 viral families. The results were verified by PCR of selected viruses in all mosquitoes, followed by phylogenetic analysis. In the present study, we identified the partial dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV) sequences in mosquitoes. Metagenomic analysis and the PCR amplification revealed three DENV sequences, one of which encodes a partial envelope protein. Two ZIKV sequences both encoding partial nonstructural protein 3 and one JEV sequence encoding the complete envelope protein were identified. There was variability in the viral titers of the newly isolated virus JEV-China/YN2016-1 of different passage viruses. The newly identified Zika virus gene from ZIKV-China/YN2016-1 was an Asian genotype and shared the highest nucleotide sequence identity (97.1%) with a ZIKV sequence from Thailand isolated in 2004. Phylogenetic analysis of ZIKV-China/YN2016-1 and ZIKV-China/YN2016-2 with known Flavivirus genes indicated that ZIKV has propagated in Yunnan province, China.


Assuntos
Vírus da Dengue/isolamento & purificação , Genes Virais , Metagenômica/métodos , Mosquitos Vetores/virologia , Zika virus/isolamento & purificação , Animais , China , Biologia Computacional , Vírus da Dengue/genética , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Zika virus/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-30406041

RESUMO

We collected 8,700 mosquitoes in three sites in China, which belonged to seven species. Their viromes were tested using metagenomic sequencing and bioinformatic analysis. The abundant viral sequences were detected and annotated belonging to more than 50 viral taxonomic families. The results were verified by PCR, followed by phylogenetic analysis. In the present study, we identified partial viral genes of dengue virus (DENV), a novel circovirus (CCV), densovirus (DNV), Japanese encephalitis virus (JEV), and Wuhan mosquito virus (WMV) in mosquitoes. Metagenomic analysis and PCR amplification revealed three DENV sequences, which were as homologous to the NS3 gene of DENV from Singapore isolated in 2005, with at least 91% nucleotide (nt) identity. Seven fragments of JEV encoding structural proteins were identified belonging to genotype I. They all shared high homology with structural protein genes of JEV isolated from Laos in 2009. The production of infectious virus particles of the newly isolated virus YunnanJEV2017-4 increased after passage from the BHK-21 cell line to the Vero cell line. Novel circovirus-related genes were identified and as being related to an unnamed gene of a mosquito circovirus (MCCV) sequence from the USA isolated in 2011, with at least 41% nt identity: this distant relationship suggests that the parent virus might belong to a novel circovirus genus. Additionally, numerous known viruses and some unknown viruses were also detected in mosquitoes from Yunnan province, China, which will be tested for propagation.


Assuntos
Biodiversidade , Metagenômica , Mosquitos Vetores/virologia , Vírus/classificação , Vírus/genética , Animais , China , Chlorocebus aethiops , Biologia Computacional , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
19.
Appl Microbiol Biotechnol ; 102(3): 1145-1154, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29189898

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is almost always caused by the North American strain of PRRS virus (PRRSV) in China; the European genotype of PRRSV has emerged in China. The mixed infection of PRRSV and Porcine circovirus type 2 virus (PCV2) are always found in pigs and PRRSV-augmented PCV2 replication and serious clinical symptoms. Current vaccines cannot protect mixed European PRRSV and PCV2 infections. Therefore, the development of a safe and effective new vaccine to prevent and control the mixed infection of European PRRSV and PCV2 is both urgent and necessary. In this study, we developed a recombinant vaccinia vaccine co-expressing the GP3 and GP5 proteins of European PRRSV and the ORF2 protein of PCV2 and evaluated the immunogenicity and its protective effects and its inactivated vaccine in pigs. The recombinant vaccinia vaccine and its inactivated vaccine both elicited significant humoral and cellular immune responses with a higher level of specific antibody responses and T-lymphocyte proliferation than the control group. Furthermore, the pigs inoculated with the recombinant vaccinia vaccine were completely protected against challenge with 105 TCID50 of European PRRSV strain LV. These data suggest that the recombinant vaccinia vaccine is a potential candidate vaccine against European PRRSV and PCV2.


Assuntos
Infecções por Circoviridae/prevenção & controle , Proteína Receptora de AMP Cíclico/genética , Imunogenicidade da Vacina , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , China , Infecções por Circoviridae/imunologia , Circovirus/genética , Circovirus/imunologia , Europa (Continente) , Vetores Genéticos , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/imunologia , Suínos , Vaccinia virus/genética , Proteínas do Envelope Viral/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-29164070

RESUMO

An attenuated vaccinia virus-MVTTEAB-was constructed by deletion of non-essential gene segments related to the immunomodulatory and virulence functions of the vaccinia virus Tiantan strain (VVTT). The shuttle plasmids pTC-EGFP, pTE-EGFP, pTA35-EGFP, pTB-EGFP, and pTA66-EGFP were constructed and combined with the early and late strong promoter pE/L and EGFP as an exogenous selectable marker. Then, through the homologous recombination technology and Cre/loxP system, the following gene fragments were gradually knocked out one by one: TC7L-TK2L, TE3L, TA35R, TB13R, and TA66R. Ultimately, the five-segment-deleted attenuated strain MVTTEAB was obtained. Knockout of these segments and genetic stability of MVTTEAB were confirmed, and it was also shown that knockout of these segments did not affect the replication ability of the virus. Further, a series of in vivo and in vitro experiments demonstrated that the virulence of MVTTEAB was attenuated significantly, but at same time, high immunogenicity was maintained. These results indicate that MVTTEAB has potential for clinical use as a safe viral vector or vaccine with good attenuation and immunogenicity.


Assuntos
Deleção de Genes , Genoma Viral , Imunogenicidade da Vacina/genética , Imunogenicidade da Vacina/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Cães , Feminino , Técnicas de Inativação de Genes , Genes Virais/genética , Vetores Genéticos , Células HeLa , Recombinação Homóloga , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Sus scrofa , Vaccinia virus/patogenicidade , Vaccinia virus/fisiologia , Células Vero , Virulência , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA