Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(27): e202402497, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679571

RESUMO

The large size of K-ion makes the pursuit of stable high-capacity anodes for K-ion batteries (KIBs) a formidable challenge, particularly for high temperature KIBs as the electrode instability becomes more aggravated with temperature climbing. Herein, we demonstrate that a hollow ZnS@C nanocomposite (h-ZnS@C) with a precise shell modulation can resist electrode disintegration to enable stable high-capacity potassium storage at room and high temperature. Based on a model electrode, we identify an interesting structure-function correlation of the h-ZnS@C: with an increase in the shell thickness, the cyclability increases while the rate and capacity decrease, shedding light on the design of high-performance h-ZnS@C anodes via engineering the shell thickness. Typically, the h-ZnS@C anode with a shell thickness of 60 nm can deliver an impressive comprehensive performance at room temperature; the h-ZnS@C with shell thickness increasing to 75 nm can achieve an extraordinary stability (88.6 % capacity retention over 450 cycles) with a high capacity (450 mAh g-1) and a superb rate even at an extreme temperature of 60 °C, which is much superior than those reported anodes. This contribution envisions new perspectives on rational design of functional metal sulfides composite toward high-performance KIBs with insights into the significant structure-function correlation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA