RESUMO
Successful completion of the molting process requires new epidermal growth and ecdysis of the old cuticle in Haemaphysalis longicornis (H. longicornis). MicroRNAs (miRNAs) participate in the development of organisms by inhibiting the expression of their target mRNAs. In this study, a novel tick-specific miRNA was identified and denoted hlo-miR-2 that serves as a novel regulator of molting events in H. longicornis nymphs by targeting a cuticular protein. The full length of this cuticular protein was first obtained and named it CPR1. A qRT-PCR analysis showed that hlo-miR-2 and CPR1 exhibit significant tissue and temporal specificity and that their transcription levels are negatively correlated during the molting process. CPR1, as a direct target of hlo-miR-2, was identified by a luciferase reporter assay in vitro. Agomir treatment indicated that the overexpression of hlo-miR-2 significantly reduced the protein expression level of CPR1, decreased the molting rate and delayed the molting time point in H. longicornis nymphs. RNA interference (RNAi) experiments demonstrated that CPR1 was significantly associated with the molting process in H. longicornis nymphs. Phenotypic rescue experiments convincingly showed that hlo-miR-2 participated in molting events by targeting CPR1 in H. longicornis nymphs. In summary, we present evidence demonstrating that miRNAs constitute a novel important regulator of molting events in addition to hormones. The described functional evidence implicating CPR1 in molting events contributes to an improved understanding of the distinct functions of the CPR family in ticks and will aid the development of a promising application of cuticular protein RNAi in tick control.
RESUMO
BACKGROUND: Ticks are blood-sucking arthropods that can transmit diseases to humans and animals. These arthropods are the second most important vectors of pathogens. MicroRNAs are a class of conserved small noncoding RNAs that play regulatory roles in gene expression at the post-transcriptional level. Molting is an important biological process in arthropods. Research on the molting process is important for understanding tick physiology and control. METHODS: Dual-luciferase reporter assays were used to assess the role of miRNA let-7 in ecdysteroid receptor (ECR) biology. The expression levels of ECR and let-7 were measured by real-time qPCR before and after tick molting. To explore the function of let-7 and ECR, we performed overexpression and knocking down of let-7 and RNAi of ECR in tick nymphs. The biological function of let-7 in molting was explored by injecting nymphs, ten days after engorgement, with let-7 agomir for overexpression and let-7 antagomir for knocking down. The rate of molting was then determined. ECR dsRNA was injected into ticks to evaluate the function of ECR by gene silencing. The expression of ECR and let-7 was measured using RT-qPCR. All data were analyzed using GraphPad Prism v.6. RESULTS: The results of the luciferase assay using a eukaryotic expression system revealed that ECR was a natural target of let-7. Let-7 overexpressed by agomir affected the rate of molting (P < 0.01) and the period of molting (P < 0.01). Let-7 antagomir for knockdown affected the period of molting (P < 0.01), but there was no effect on the rate of molting (P = 0.27). ECR dsRNA gene silencing significantly affected the rate of molting (P < 0.05). CONCLUSIONS: This study demonstrated that let-7 can regulate the expression of ECR and that let-7 can affect molting in ticks. Our results help to understand the regulation of let-7 by 20-hydroxyecdysone (20E) and will provide a reference for functional analysis studies of microRNAs in ticks.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Muda/genética , Receptores de Esteroides/genética , Carrapatos/genética , Animais , Ecdisterona/genética , Ninfa/genética , Ninfa/fisiologia , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Carrapatos/fisiologiaRESUMO
The miRNA profiles of a Haemaphysalis longicornis wild-type (HLWS) and of a Haemaphysalis longicornis cultured population (HLCS) were sequenced using the Illumina Hiseq 4000 platform combined with bioinformatics analysis and real-time polymerase chain reaction (RT-PCR). A total of 15.63 and 15.48 million raw reads were acquired for HLWS and HLCS, respectively. The data identified 1517 and 1327 known conserved miRNAs, respectively, of which 342 were differentially expressed between the two libraries. Thirty-six novel candidate miRNAs were predicted. To explain the functions of these novel miRNAs, Gene Ontology (GO) analysis was performed. Target gene function prediction identified a significant set of genes related to salivary gland development, pathogen-host interaction and regulation of the defence response to pathogens expressed by wild H. longicornis ticks. Cellular component biogenesis, the immune system process, and responses to stimuli were represented at high percentages in the two tick libraries. GO enrichment analysis showed that the percentages of most predicted functions of the target genes of miRNA were similar, as were certain specific categories of functional enhancements, and that these genes had different numbers and specific functions (e.g., auxiliary transport protein and electron carrier functions). This study provides novel findings showing that miRNA regulation affects the expression of immune genes, indicating a considerable influence of environment-induced stressful stimulation on immune homeostasis. Differences in the living environments of ticks can lead to differences in miRNAs between ticks and provide a basis and a convenient means to screen for genes encoding immune factors in ticks.
Assuntos
Ixodidae/genética , MicroRNAs/genética , Animais , Biologia Computacional , Ontologia Genética , Interações Hospedeiro-Patógeno/genética , Reação em Cadeia da Polimerase , Coelhos/parasitologiaRESUMO
BACKGROUND: Insect-borne diseases could induce severe symptoms in human and clinical signs in animals, such as febrility, erythra, arthralgia and hemorrhagic fever, and cause significant economic losses and pose public health threat all over the world. The significant advantages of Luminex xMAP technology are high-throughput, high parallel and automation. This study aimed to establish a liquid bead array based on Luminex xMAP technology that was able to simultaneously detect multiple insect-borne pathogens. METHODS: Specific probes and primers to detect the nucleic acid of 10 insect-borne pathogens were designed. Probes were coupled with fluorescent carboxylated microspheres. The parameters of the system were optimized, including ratio of forward/reverse primers (1:2), hybridization temperature (50 °C) and duration (30 min) and quantity of PCR product (2 µl). The sensitivity and specificity of the system were also evaluated. Moreover mixed nucleic acid of 10 insect-borne pathogens, including Bluetongue virus, Epizootic hemorrhagic disease virus of deer, Coxiella burnetii, African swine fever virus, West Nile fever virus, Borrelia burgdorferi, vesicular stomatitis virus, Rift Valley fever virus, Ebola virus and Schmalenberg's disease virus, and 3000 clinical samples were tested for practicability. RESULTS: The optimized detection system showed high sensitivity, specificity and reproducibility. Each probe showed specific fluorescence signal intensity without any cross-hybridization for the other insect-borne pathogens tested, which included dengue virus, tick-borne encephalitis virus, Japanese encephalitis virus, Xinjiang hemorrhagic fever virus, spotted fever group rickettsiae, ehrlichiae and chikungunya virus. The limit of detection was 10 copies of target gene. Insect-borne pathogens were successfully detected among the 3000 clinical samples, and the results were consistent with those obtained using gold-standard assays or commercial nucleic acid detection kits. CONCLUSIONS: This optimized liquid array detection system was high-throughput and highly specific and sensitive in screening of the insect-borne pathogens. It was promising in detection of these pathogens for molecular epidemiological studies.
Assuntos
Borrelia/isolamento & purificação , Coxiella burnetii/isolamento & purificação , Insetos/microbiologia , Vírus/isolamento & purificação , Animais , DNA/isolamento & purificação , Ácidos Nucleicos , RNA/isolamento & purificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Carrapatos/microbiologiaRESUMO
In this study, two road-killed marbled polecats (Vormela peregusna) were molecularly analysed for tick-borne pathogens. Rickettsia raoultii, "Candidatus Rickettsia barbariae" and a novel Babesia genotype have been identified, for the first time in marbled polecat. DNA of this Babesia sp. genotype was also present in four out of 15 Haemaphysalis erinacei ticks collected from the Babesia PCR-positive marbled polecat. Results of this study suggest that marbled polecats may serve as reservoirs for these bacteria and protozoans.