Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
ACS Nano ; 18(12): 8777-8797, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38488479

RESUMO

Stem cell-derived extracellular vesicles (EVs) show great potential for promoting bone tissue regeneration. However, normal EVs (Nor-EVs) have a limited ability to direct tissue-specific regeneration. Therefore, it is necessary to optimize the osteogenic capacity of EV-based systems for repairing extensive bone defects. Herein, we show that hydrogels loaded with osteoinductive dental pulp stem cell-derived EVs (Ost-EVs) enhanced bone tissue remodeling, resulting in a 2.23 ± 0.25-fold increase in the expression of bone morphogenetic protein 2 (BMP2) compared to the hydrogel control group. Moreover, Ost-EVs led to a higher expression of alkaline phosphatase (ALP) (1.88 ± 0.16 of Ost-EVs relative to Nor-EVs) and the formation of orange-red calcium nodules (1.38 ± 0.10 of Ost-EVs relative to Nor-EVs) in vitro. RNA sequencing revealed that Ost-EVs showed significantly high miR-1246 expression. An ideal hydrogel implant should also adhere to surrounding moist tissues. In this study, we were drawn to mussel-inspired adhesive modification, where the hydrogel carrier was crafted from hyaluronic acid (HA) and polyethylene glycol derivatives, showcasing impressive tissue adhesion, self-healing capabilities, and the ability to promote bone growth. The modified HA (mHA) hydrogel was also responsive to environmental stimuli, making it an effective carrier for delivering EVs. In an ectopic osteogenesis animal model, the Ost-EV/hydrogel system effectively alleviated inflammation, accelerated revascularization, and promoted tissue mineralization. We further used a rat femoral condyle defect model to evaluate the in situ osteogenic ability of the Ost-EVs/hydrogel system. Collectively, our results suggest that Ost-EVs combined with biomaterial-based hydrogels hold promising potential for treating bone defects.


Assuntos
Vesículas Extracelulares , Hidrogéis , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Polpa Dentária , Diferenciação Celular , Regeneração Óssea , Osteogênese , Células-Tronco , Ácido Hialurônico/farmacologia , Vesículas Extracelulares/metabolismo
2.
BMC Oral Health ; 23(1): 557, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573308

RESUMO

BACKGROUND: Many scholars have proven cervical vertebral maturation (CVM) method can predict the growth and development and assist in choosing the best time for treatment. However, assessing CVM is a complex process. The experience and seniority of the clinicians have an enormous impact on judgment. This study aims to establish a fully automated, high-accuracy CVM assessment system called the psc-CVM assessment system, based on deep learning, to provide valuable reference information for the growth period determination. METHODS: This study used 10,200 lateral cephalograms as the data set (7111 in train set, 1544 in validation set and 1545 in test set) to train the system. The psc-CVM assessment system is designed as three parts with different roles, each operating in a specific order. 1) Position Network for locating the position of cervical vertebrae; 2) Shape Recognition Network for recognizing and extracting the shapes of cervical vertebrae; and 3) CVM Assessment Network for assessing CVM according to the shapes of cervical vertebrae. Statistical analysis was conducted to detect the performance of the system and the agreement of CVM assessment between the system and the expert panel. Heat maps were analyzed to understand better what the system had learned. The area of the third (C3), fourth (C4) cervical vertebrae and the lower edge of second (C2) cervical vertebrae were activated when the system was assessing the images. RESULTS: The system has achieved good performance for CVM assessment with an average AUC (the area under the curve) of 0.94 and total accuracy of 70.42%, as evaluated on the test set. The Cohen's Kappa between the system and the expert panel is 0.645. The weighted Kappa between the system and the expert panel is 0.844. The overall ICC between the psc-CVM assessment system and the expert panel was 0.946. The F1 score rank for the psc-CVM assessment system was: CVS (cervical vertebral maturation stage) 6 > CVS1 > CVS4 > CVS5 > CVS3 > CVS2. CONCLUSIONS: The results showed that the psc-CVM assessment system achieved high accuracy in CVM assessment. The system in this study was significantly consistent with expert panels in CVM assessment, indicating that the system can be used as an efficient, accurate, and stable diagnostic aid to provide a clinical aid for determining growth and developmental stages by CVM.


Assuntos
Aprendizado Profundo , Humanos , Determinação da Idade pelo Esqueleto/métodos , Cefalometria/métodos , Vértebras Cervicais/diagnóstico por imagem , Radiografia
3.
Prog Orthod ; 24(1): 5, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36775824

RESUMO

BACKGROUND: During the intrusion of lower incisors with clear aligners (CAs), root disengagement from the alveolar bone often occurs, resulting in serious complications. This study aimed to determine the potential force mechanism of the mandibular anterior teeth under the pressure of CA, providing theoretical data for clinical practice. METHODS: In this study, a 3D finite element model was established, including the CA, periodontal ligament, and mandibular dentition. Incisor mandibular plane angles were set as 5 groups: 90°, 95°, 100°, 105°, and 110°. The 4 mandibular incisors were intruded by 0.2 mm, while the canines were the anchorage teeth. The stress, force systems, and potential movement trends of mandibular anterior teeth were obtained. RESULTS: The compressive stress of the incisors was concentrated in the lingual fossa, incisal ridge, and apex. With the increase in IMPA, the moment of central incisors changed from lingual crown moment to labial crown moment, with the turning point between 100° and 105°, but the center of resistance (CR) was always subjected to the force toward the lingual and intrusive direction. The force and moment toward the labial side of the lateral incisors were greater than those toward the central incisors. The canines always tipped distally and received extrusive force with no relationship with IMPA. CONCLUSIONS: With the increase in the initial IMPA, the direction of labiolingual force on the mandibular incisors was reversed. However, the root of the lower incisors always tipped labially, which indicated fenestration and dehiscence.


Assuntos
Incisivo , Aparelhos Ortodônticos Removíveis , Análise de Elementos Finitos , Ligamento Periodontal , Técnicas de Movimentação Dentária/métodos
4.
Biomater Adv ; 133: 112657, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35034825

RESUMO

The multi-bacterial environment of the oral cavity makes it hard for periodontal regeneration. As a class of antimicrobial peptide, beta defensin has been found to show broad-spectrum antibacterial ability. In addition, connective tissue growth factor (CTGF) is demonstrated to play a great role in multi-physiological events such as angiogenesis, wound healing and, more importantly, fibrogenesis. In this study, human ß defensin 3 (hBD3) and CTGF were co-transfected into bone marrow derived mesenchymal stem cells (BMSCs) for preparing cell sheets. The transfection efficiency was detected through fluorescence of eGFP and western blot assay. Our results showed that the hBD3 and CTGF proteins were highly and stably expressed in the BMSCs after transfection. The results of RT-PCR and induced differentiation indicated that hBD3 promoted osteogenic differentiation of BMSCs, while CTGF significantly increased fibrogenic differentiation even in the presence of hBD3. The BMSCs acquired stronger capacity in terms of promoting M2 polarization of RAW 264.7 macrophages fulfilled by the transfection and secretion of hBD3 and CTGF. To further evaluate the periodontal remodeling performance of cell sheets, a coralline hydroxyapatite (CHA)-chitosan based hydrogel-human tooth system was designed to simulate the natural periodontal environment. The results showed that dense extracellular matrix, oriented fiber arrangement, and abundant collagen deposition appeared in the area of BMSCs sheets after subcutaneous transplantation. Altogether, our data showed that the lentivirus transfected BMSCs sheets had a promising application prospect for periodontal repair.


Assuntos
Regeneração Tecidual Guiada Periodontal , Células-Tronco Mesenquimais , beta-Defensinas , Diferenciação Celular/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Humanos , Osteogênese/genética , beta-Defensinas/genética
5.
Biomed Eng Online ; 20(1): 119, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838009

RESUMO

PURPOSE: Long-leg-radiography (LLR) is commonly used for the measurement of lower limb alignment. However, limb rotations during radiography may interfere with the alignment measurement. This study examines the effect of limb rotation on the accuracy of measurements based on the mechanical and anatomical axes of the femur and tibia, with variations in knee flexion and coronal deformity. METHODS: Forty-five lower limbs of 30 patients were scanned with CT. Virtual LLRs simulating five rotational positions (neutral, ± 10[Formula: see text], and ± 20[Formula: see text] internal rotation) were generated from the CT images. Changes in the hip-knee-ankle angle (HKA) and the femorotibial angle (FTA) were measured on each image with respect to neutral values. These changes were related to knee flexion and coronal deformity under both weight- and non-weight-bearing conditions. RESULTS: The measurement errors of the HKA and FTA derived from limb rotation were up to 4.84 ± 0.66[Formula: see text] and 7.35 ± 0.88[Formula: see text], respectively, and were correlated with knee flexion (p < 0.001) and severe coronal deformity (p < 0.001). Compared with the non-weight-bearing position, the coronal deformity measured in the weight-bearing condition was 2.62[Formula: see text] greater, the correlation coefficients between the coronal deformity and the deviation ranges of HKA and FTA were also greater. CONCLUSIONS: Flexion and severe coronal deformity have a significant influence on the measurement error of lower limb alignment. Errors can be amplified in the weight-bearing condition compared with the non-weight-bearing condition. When using HKA and FTA to represent the mechanical axis and the anatomical axis on LLR, limb rotation impacts the anatomic axis more than the mechanical axis in patients with severe deformities. Considering LLR as the gold standard image modality, attention should be paid to the measurement of knee alignment. Especially for the possible errors derived from weight-bearing long-leg radiographs of patients with severe knee deformities.


Assuntos
Osteoartrite do Joelho , Tíbia , Fêmur/diagnóstico por imagem , Humanos , Articulação do Joelho/diagnóstico por imagem , Extremidade Inferior/diagnóstico por imagem , Amplitude de Movimento Articular , Tíbia/diagnóstico por imagem
6.
Ann Biomed Eng ; 49(9): 2228-2242, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33686616

RESUMO

Root resorption is a common complication during orthodontic treatment. Microcracks occur on the root surface after an orthodontic force is applied and may be related to the root resorption caused by the orthodontic process. However, the mechanisms underlying root resorption induced by microcracks remain unclear. In this study, a rat orthodontic model was used to investigate the biological mechanisms of root resorption caused by microcracks. First, the first molar was loaded with 0.5-N orthodontic force for 7 days, and microcracks were observed on the root apex surface using a scanning electron microscope. Second, to describe the mechanical principle resulting in microcracks, a finite element model of rat orthodontics was established, which showed that a maximum stress on the root apex can cause microcrack extension. Third, after 7 days of loading in vivo, histological observation revealed that root resorption occurred in the stress concentration area and cementoclasts appeared in the resorption cavity. Finally, proteomics analysis of the root apex area, excluding the periodontal ligament, revealed that the NOX2, Aifm1, and MAPK signaling pathways were involved in the root resorption process. Microcrack extension on the root surface increases calcium ion concentrations, alters the proteins related to root resorption, and promotes cementoclast formation.


Assuntos
Reabsorção da Raiz , Técnicas de Movimentação Dentária , Raiz Dentária , Animais , Fator de Indução de Apoptose/metabolismo , Análise de Elementos Finitos , Masculino , Maxila/diagnóstico por imagem , Microscopia Eletrônica de Varredura , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADPH Oxidase 2/metabolismo , Osteoclastos , Proteômica , Ratos Wistar , Reabsorção da Raiz/diagnóstico por imagem , Reabsorção da Raiz/metabolismo , Estresse Mecânico , Raiz Dentária/diagnóstico por imagem , Raiz Dentária/lesões , Raiz Dentária/metabolismo , Raiz Dentária/ultraestrutura , Microtomografia por Raio-X
7.
J Biomech ; 110: 109938, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32827792

RESUMO

Root resorption is closely related to orthodontic force and affects orthodontic treatment with high incidence; however, the mechanism governing this effect is unclear. Microcracks are associated with bone resorption and may also play an important role in root resorption. This study aimed to assess the occurrence of microcracks on the root surface induced by orthodontic force, analyze the association between force and microcrack development, and propose potential measures to reduce microcracks. Different loads (0.5, 1, or 2 N) were applied between the left first molar and anterior teeth for different durations (1, 3, 7, or 14 days) in a rabbit model. The first molar was dissected and its surface was examined using scanning electron microscopy (SEM), which revealed the presence of microcracks on the compressed side of the root apices. The number, width, and length of microcracks were all positively correlated with the load magnitude and duration. The breaking strength of the root apex was tested by using a digital force tester. In addition, a finite element (FE) model was used to analyze the stress at the root apices and the crack propagation on the root surfaces. FE analysis calculated that the regions of maximum stress at the root apices were consistent with the microcrack regions observed via SEM. These results imply that orthodontic force can directly induce the occurrence and development of microcrack, and may contribute to further root resorption. Therefore, an appropriate interval and direction of orthodontic force may help reduce microcracks and prevent root resorption.


Assuntos
Reabsorção da Raiz , Animais , Microscopia Eletrônica de Varredura , Dente Molar , Coelhos , Reabsorção da Raiz/etiologia , Estresse Mecânico , Técnicas de Movimentação Dentária , Raiz Dentária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA