Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1346922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38528870

RESUMO

Introduction: This trial was conducted to compare the effect of diets supplemented with plant essential oil (PEO) and coated plant essential oil (CEO) on growth performance, immunity, antioxidant activity, and fecal microbiota of weaned piglets. Methods: A total of 360 21-day-old weaned piglets were randomly allocated into three groups, namely, CON, PEO, and CEO (basal diets supplemented with 0, 500 mg/kg PEO, and 500 mg/kg CEO, respectively) for a 4-week feeding trial. Results and discussion: The results showed that dietary supplementation with CEO improved the average final weight and average daily gain, decreased the diarrhea rate, increased antioxidant enzyme activities, enhanced immunoglobulin concentrations, and decreased concentrations of pro-inflammatory cytokines in the serum of weaned piglets (p < 0.05). In addition, CEO addition increased the fecal concentrations of propionic acid and isovaleric acid of piglets (p < 0.05). Spearman correlation analysis showed that fecal microorganisms at the genus level were closely correlated with the volatile fatty acid concentrations. The present study indicated that PEO and CEO could improve growth performance, enhance immunity, and increase antioxidant capacity by modulating the microbial flora in weaned piglets. Moreover, CEO addition seemed to offer more positive results than of PEO addition.

2.
Animals (Basel) ; 13(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38066949

RESUMO

The beneficial effects of butyric acid in poultry production are well documented, while the relationship between sodium butyrate (SB) and microcapsule sustained-release sodium butyrate (MSSB), especially in yellow broilers, remains poorly investigated. This study was designed to elucidate the function as well as the potential mechanisms of SB and MSSB in enhancing health in yellow broilers. In total, 360 one-day-old yellow broilers were allocated to three treatment groups. The control group (CON) received a basic diet, while the SB group was provided with 1000 mg/kg of sodium butyrate (SB), and the MSSB received microcapsule sustained-release sodium butyrate (MSSB), all over a period of 56 days. Compared to the CON group, the dietary supplementation of both SB and MSSB showed a lower feed:gain ratio (p < 0.01). No significant (p > 0.05) difference in antioxidant capacity was observed between the three groups. We observed significantly higher levels (p < 0.05) of immunoglobulins and a reduction in concentrations in both the SB and MSSB groups compared to the CON group. Furthermore, both SB and MSSB induced alterations in the diversity, structure, and function of gut microbiota. MSSB demonstrated even more pronounced beneficial effects than SB, particularly in regard to the serum IgA level (p = 0.05), cecal isovalerate concentration (p < 0.05), and villus height (p < 0.01). The sequencing of the gut microbiota revealed that MSSB led to a significant increase in the relative abundance of Clostridia UCG-014, Bacilli RF39, and Oscillospiraceae UCG-005. Predictions of bacterial function indicated changes in KEGG pathways, including an enrichment of tryptophan metabolism (ko00380), and a reduction in fructose and mannose metabolism (ko00051), chloroalkane and chloroalkene degradation (ko00625), and naphthalene degradation (ko00626) in yellow broilers fed with MSSB. Among these, the mediation analysis revealed a causal effect between the Clostridia UCG-014 in the gut and serum IgA, with tryptophan metabolism being a key mediator in this relationship. Our results suggest that dietary MSSB can improve the growth performance, immunity, and gut microbiota of yellow broilers. MSSB increased the abundance of Clostridia UCG-014 and activated the tryptophan metabolism pathway (ko00380), contributing to IgA levels in yellow broilers through this mechanism.

3.
Animals (Basel) ; 13(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136821

RESUMO

Microencapsulated sodium butyrate (MS-SB) is an effective sodium butyrate additive which can reduce the release of sodium butyrate (SB) in the fore gastrointestinal tract. In this study, we assess the protective effects and mechanisms of MS-SB in Clostridium perfringens (C. perfringens)-challenged broilers. Broiler chickens were pre-treated with SB or MS-SB for 56 days and then challenged with C. perfringens three times. Our results indicate that the addition of MS-SB or SB before C. perfringens infection significantly decreased the thymus index (p < 0.05). Serum IgA, IgY, and IgM concentrations were significantly increased (p < 0.05), while pro-inflammatory IL-1ß, IL-6, and TNF-α were significantly decreased (p < 0.05) under MS-SB or SB supplementation. Compared with SB, MS-SB presented a stronger performance, with higher IgA content, as well as a lower IL-1ß level when normal or C. perfringens-challenged. While C. perfringens challenge significantly decreased the villus height (p < 0.05), MS-SB or SB administration significantly increased the villus height and villus height/crypt depth (V/C ratio) (p < 0.05). Varying degrees of SB or MS-SB increased the concentrations of volatile fatty acids (VFAs) during C. perfringens challenge, where MS-SB presented a stronger performance, as evidenced by the higher content of isovaleric acid and valeric acid. Microbial analysis demonstrated that both SB or MS-SB addition and C. perfringens infection increase variation in the microbiota community. The results also indicate that the proportions of Bacteroides, Faecalibacterium, Clostridia, Ruminococcaceae, Alistipes, and Clostridia were significantly higher in the MS-SB addition group while, at same time, C. perfringens infection increased the abundance of Bacteroides and Alistipes. In summary, dietary supplementation with SB or MS-SB improves the immune status and morphology of intestinal villi, increases the production of VFAs, and modulates cecal microbiota in chickens challenged with C. perfringens. Moreover, MS-SB was more effective than SB with the same supplemental amount.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA