Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nat Prod Res ; : 1-9, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684026

RESUMO

A series of ß-cyclodextrin (ß-CD)-conjugates were prepared by combining three abietane-type diterpene acids with two azide-functionalized ß-CDs via click chemistry, and the antiviral activity against wild-type and omicron SARS-CoV-2 spike pseudovirus as well as the antibacterial activity against Escherichia coli were investigated. All the synthesised conjugates exhibited no significant cytotoxicity to BHK-21-hACE2 cells with cell viability over 80% at concentration of 15 µM. Among the conjugates, the heptavalent ß-CD-dehydroabietic acid conjugate 6b exhibited higher anti-SARS-CoV-2 activity against the omicron variant compared to the other conjugates. This study suggested that the multivalent diterpene acid derivatives may have potential application against coronaviruses as entry inhibitors.

3.
Nat Biotechnol ; 42(3): 518-528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37231262

RESUMO

The development of cancer neoantigen vaccines that prime the anti-tumor immune responses has been hindered in part by challenges in delivery of neoantigens to the tumor. Here, using the model antigen ovalbumin (OVA) in a melanoma model, we demonstrate a chimeric antigenic peptide influenza virus (CAP-Flu) system for delivery of antigenic peptides bound to influenza A virus (IAV) to the lung. We conjugated attenuated IAVs with the innate immunostimulatory agent CpG and, after intranasal administration to the mouse lung, observed increased immune cell infiltration to the tumor. OVA was then covalently displayed on IAV-CPG using click chemistry. Vaccination with this construct yielded robust antigen uptake by dendritic cells, a specific immune cell response and a significant increase in tumor-infiltrating lymphocytes compared to peptides alone. Lastly, we engineered the IAV to express anti-PD1-L1 nanobodies that further enhanced regression of lung metastases and prolonged mouse survival after rechallenge. Engineered IAVs can be equipped with any tumor neoantigen of interest to generate lung cancer vaccines.


Assuntos
Vacinas Anticâncer , Vírus da Influenza A , Neoplasias Pulmonares , Animais , Camundongos , Neoplasias Pulmonares/prevenção & controle , Vacinas Anticâncer/genética , Antígenos , Pulmão , Peptídeos , Vacinação , Antígenos de Neoplasias/genética
4.
J Antibiot (Tokyo) ; 77(1): 39-49, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38001284

RESUMO

A set of triterpene A-ring hydroxymethylene-amino-derivatives was synthesized and their antiviral activity was studied. The synthesized compounds were tested for their potential inhibition of SARS-CoV-2 pseudovirus in BHK-21-hACE2 cells and influenza A/PuertoRico/8/34 (H1N1) virus in MDCK cell culture. Compounds 6, 8 and 19 showed significant anti-SARS-CoV-2 pseudovirus activity with EC50 value of 3.20-11.13 µM, which is comparable to the positive control amodiaquine (EC50 3.17 µM). Among them, 28-O-imidazolyl-azepano-betulin 6 and C3-hydroxymethylene-amino-glycyrrhetol-11,13-diene 19 were identified as the lead compounds with SI values of 7 and 10. The binding mode of compound 6 into the RBD domain of SARS-CoV-2 spike glycoprotein (PDB code: 7DK3) by docking and molecular dynamics simulation was investigated.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Triterpenos , Humanos , SARS-CoV-2 , Triterpenos/farmacologia , Simulação de Acoplamento Molecular , Ligação Proteica , Antivirais/farmacologia
5.
Chem Biol Drug Des ; 103(1): e14370, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802645

RESUMO

Oleanolic and glycyrrhetic acids alkyne derivatives were synthesized as a result of propargylation of the indole NH-group condensed with the triterpene A-ring, the following aminomethylation led to a series of Mannich bases. The synthesized compounds were tested for their potential inhibition of influenza A/PuertoRico/8/34 (H1N1) virus in Madin-Darby canine kidney (MDCK) cell culture and SARS-CoV-2 pseudovirus in baby hamster kidney-21-human angiotensin-converting enzyme 2 (BHK-21-hACE2) cells. Mannich bases of oleanolic and glycyrrhetic acids N-propargylated indoles 7, 8, and 12 were the most efficacious against influenza virus A with IC50 7-10 µM together with a low toxicity (CC50 > 145 µM) and high selectivity index SI value 20. Indolo-oleanolic acid morpholine amide Mannich base holding N-methylpiperazine moiety 9 showed anti-SARS-CoV-2 pseudovirus activity with EC50 value of 14.8 µM. Molecular docking and dynamics modeling investigated the binding mode of the compounds 7 and 12 into the binding pocket of influenza A virus M2 protein and compound 9 into the RBD domain of SARS-CoV-2 spike glycoprotein.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Ácido Oleanólico , Cricetinae , Animais , Cães , Humanos , Simulação de Acoplamento Molecular , Bases de Mannich , Ácido Oleanólico/farmacologia , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , Indóis/farmacologia
6.
Eur J Pharmacol ; 960: 176116, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38059443

RESUMO

Cardiac fibrosis (CF) in response to persistent exogenous stimuli or myocardial injury results in cardiovascular diseases (CVDs). Protein tyrosine phosphatase 1B (PTP1B) can promote collagen deposition through regulating AMPK/TGF-ß/Smads signaling pathway, and PTP1B knockout improves cardiac dysfunction against overload-induced heart failure. Oleanolic acid (OA) has been proven to be an inhibitor of PTP1B, and its anti-cardiac remodeling effects have been validated in different mouse models. To improve the bioactivity of OA and to clarify whether OA derivatives with stronger inhibition of PTP1B activity have greater prevention of cardiac remodeling than OA, four new OA derivatives were synthesized and among them, we found that compound B had better effects than OA in inhibiting cardiac fibrosis both in vivo in the isoproterenol (ISO)-induced mouse cardiac fibrosis and in vitro in the TGF-ß/ISO-induced 3T3 cells. Combining with the results of molecular docking, surface plasmon resonance and PTP1B activity assay, we reported that OA and compound B directly bound to PTP1B and inhibited its activity, and that compound B showed comparable binding capability but stronger inhibitory effect on PTP1B activity than OA. Moreover, compound B presented much greater effects on AMPK activation and TGF-ß/Smads inhibition than OA. Taken together, OA derivative compound B more significantly alleviated cardiac fibrosis than OA through much greater inhibition of PTP1B activity and thus much stronger regulation of AMPK/TGF-ß/Smads signaling pathway.


Assuntos
Ácido Oleanólico , Fator de Crescimento Transformador beta , Animais , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais , Simulação de Acoplamento Molecular , Fibrose , Fator de Crescimento Transformador beta1/metabolismo
7.
Eur J Med Chem ; 260: 115723, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595545

RESUMO

N-acetylneuraminic acid (Neu5Ac) is a glycan receptor of viruses spread in many eukaryotic cells. The present work aimed to design, synthesis and biological evaluation of a panel of Neu5Ac derivatives based on a cyclodextrin (CD) scaffold for targeting influenza and coronavirus membrane proteins. The multivalent Neu5Ac glycoclusters efficiently inhibited chicken erythrocyte agglutination induced by intact influenza virus in a Neu5Ac density-dependent fashion. Compared with inhibition by Neu5Ac, the multivalent inhibitor with 21 Neu5Ac residues on the primary face of the ß-CD scaffold afforded 1788-fold higher binding affinity inhibition for influenza virus hemagglutinin with a dissociation constant (KD) of 3.87 × 10-7 M. It showed moderate binding affinity to influenza virus neuraminidase, but with only about one-thirtieth the potency of that with the HA protein. It also exhibited strong binding affinity to the spike protein of three human coronaviruses (severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and severe acute respiratory syndrome coronavirus 2), with KD values in the low micromolar range, which is about 10-time weaker than that of HA. Therefore, these multivalent sialylated CD derivatives have possible therapeutic application as broad-spectrum antiviral entry inhibitors for many viruses by targeting the Neu5Ac of host cells.


Assuntos
COVID-19 , Ciclodextrinas , Inibidores da Fusão de HIV , Influenza Humana , Humanos , Animais , Ácido N-Acetilneuramínico , Antivirais/farmacologia , Galinhas
8.
Mol Pharm ; 20(1): 701-710, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36458832

RESUMO

Betulinic acid (BA) and oleanolic acid (OA) are plant-derived conjugates found in various medicinal plants that have emerged as potential antitumor agents. Herein, a series of novel BA and OA derivatives were synthesized by conjugation with per-O-methylated-ß-cyclodextrin (PM-ß-CD), and their anticancer properties against a panel of three human cancer cell lines were evaluated. Two OA-PM-ß-CD conjugates (48 and 50) were observed to be the most potent conjugates against the three cell lines (MCF-7, BGC-823, and HL-60), with a 15- to 20-fold decrease in the IC50 values (IC50: 6.06-8.47 µM) compared with their parental conjugate (OA). Annexin V-FITC/propidium iodide staining and Western blot analysis revealed that both conjugates induced apoptosis in HL-60 cells. Additionally, in the representative conjugate 48-treated HL-60 cells, a decrease in mitochondrial membrane potential and subsequent release of cytochrome c into the cytosol were observed, indicating the activation of the intrinsic apoptosis pathway. Furthermore, 48 dramatically induced the generation of reactive oxygen species (ROS) in HL-60 cells, and the corresponding effect could be reversed using the ROS scavenger N-acetylcysteine. Collectively, these results suggest that the novel pentacyclic triterpenoid derivatives trigger the intrinsic apoptotic pathways via the ROS-mediated activation of caspase-3 signaling, inducing cell death in human cancer cells.


Assuntos
Antineoplásicos , Neoplasias , Triterpenos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/farmacologia , Apoptose , Antineoplásicos/farmacologia , Células HL-60 , Triterpenos Pentacíclicos/farmacologia
9.
Nat Prod Res ; 37(12): 1954-1960, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35975755

RESUMO

A set of 12 abietane diterpene derivatives have been synthesised by the Ugi-four component reaction (Ugi-4CR) and tested for cytotoxicity and activity against influenza virus A/Puerto Rico/8/34 (H1N1) and SARS-CoV-2 pseudovirus. Five dipeptide derivatives demonstrated a selectivity index (SI) higher than 10 and IC50 values from 2 to 32 µM against influenza virus. Compound 11 was found to be a lead with SI of 200, and time-of-addition experiments showed the viral entry into the cell and the binding of the virus to the receptor as a possible target. Compound 7 was the only one showed weak anti-SARS-CoV-2 activity with EC50 value of 80.96 µM. Taken together, our data suggest the potency of diterpene acids-Ugi products as new effective anti-influenza compounds.


Assuntos
COVID-19 , Diterpenos , Vírus da Influenza A Subtipo H1N1 , Humanos , SARS-CoV-2 , Abietanos/farmacologia , Abietanos/química
10.
Phytochem Lett ; 51: 91-96, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35935343

RESUMO

A chemical library was constructed based on the resin acids (abietic, dehydroabietic, and 12-formylabietic) and its diene adducts (maleopimaric and quinopimaric acid derivatives). The one-pot three-component CuCl-catalyzed aminomethylation of the abietane diterpenoid propargyl derivatives was carried out by formaldehyde and secondary amines (diethylamine, pyrrolidine, morpholine, and homopiperazine). All compounds were tested for cytotoxicity and antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells and SARS-CoV-2 pseudovirus in BHK-21-hACE2 cells. Among 21 tested compounds, six derivatives demonstrated a selectivity index (SI) higher than 10, and their IC50 values ranged from 0.19 to 5.0 µM. Moreover, two derivatives exhibited potent anti-SARS-CoV-2 infection activity. The antiviral activity and toxicity strongly depended on the nature of the diterpene core and heterocyclic substituent. Compounds 12 and 21 bearing pyrrolidine moieties demonstrated the highest virus-inhibiting activity with SIs of 128.6 and 146.8, respectively, and appeared to be most effective when added at the time points 0-10 and 1-10 h of the viral life cycle. Molecular docking and dynamics modeling were adopted to investigate the binding mode of compound 12 into the binding pocket of influenza A virus M2 protein. Compound 9 with a pyrrolidine group at C20 of 17-formylabietic acid was a promising anti-SARS-CoV-2 agent with an EC50 of 10.97 µM and a good SI value > 18.2. Collectively, our data suggested the potency of diterpenic Mannich bases as effective anti-influenza and anti-COVID-19 compounds.

11.
J Med Chem ; 65(10): 7154-7169, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35579113

RESUMO

Influenza hemagglutinin that drives viral entry into cells via the membrane fusion process is an up-and-coming antiviral drug target. Herein, we described for the first time the design, synthesis, and biological characteristics of a new class of pentacyclic triterpenoid-based proteolysis targeting chimeras (PROTACs) to enhance the degradation of hemagglutinin target. Among these PROTACs, V3 showed the best degradation effect on the hemagglutinin with a median degradation concentration of 1.44 µM in a ubiquitin and proteasome-dependent manner and broad-spectrum anti-influenza A virus activity but not affected the entry of influenza virus. Moreover, intravenous injection of V3 protected mice against influenza A virus-induced toxic effects. Further diazirine-containing photo-crosslinking mass spectrometric analysis of hemagglutinin complexes indicated crosslinking to Asn15, Thr31, and Asn27, a novel target of hemagglutinin. Taken together, our data revealed that oleanolic acid-based PROTACs could degrade hemagglutinin protein, providing a new direction toward the discovery of potential anti-influenza drugs.


Assuntos
Influenza Humana , Triterpenos , Animais , Quimera/metabolismo , Hemaglutininas , Humanos , Influenza Humana/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Proteínas/metabolismo , Proteólise , Triterpenos/química
12.
Front Chem ; 10: 836955, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494649

RESUMO

In our continuing efforts toward the design of novel pentacyclic triterpene derivatives as potential anti-influenza virus entry inhibitors, a series of homogeneous heptavalent glycyrrhetinic acid derivatives based on ß-cyclodextrin scaffold were designed and synthesized by click chemistry. The structure was unambiguously characterized by NMR, IR, and MALDI-TOF-MS measurements. Seven conjugates showed sufficient inhibitory activity against influenza virus infection based on the cytopathic effect reduction assay with IC50 values in the micromolar range. The interactions of conjugate 37, the most potent compound (IC50 = 2.86 µM, CC50 > 100 µM), with the influenza virus were investigated using the hemagglutination inhibition assay. Moreover, the surface plasmon resonance assay further confirmed that compound 37 bound to the influenza HA protein specifically with a dissociation constant of 5.15 × 10-7 M. Our results suggest the promising role of ß-cyclodextrin as a scaffold for preparing a variety of multivalent compounds as influenza entry inhibitors.

13.
Medicine (Baltimore) ; 101(10): e29026, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35451405

RESUMO

ABSTRACT: Among the diverse medical education systems in China, the 8-year program is dedicated to cultivating physician scientists. Although the research ability of senior students in 8-year medical programs is a pivotal quality, it remains unclear. This study aimed to clarify the current status and challenges of students' research experience, abilities, and outputs.A multicenter cross-sectional study was conducted in 5 medical schools in northern China. Electronic questionnaires were sent to 235 randomly chosen fifth-grade or sixth-grade 8-year-program medical students. A total of 211 responses were collected and analyzed using SPSS 22.0.Only 13.3% of participants chose research as their future career goal. Students generally felt that conducting research was stressful and difficult. The greatest obstacle was a lack of time due to heavy workloads. The 2 major motivations for research were graduation and/or future employment (75.8%) and research interest (24.2%). More than half of the students (142, 67.3%) had research experience by the time of the survey, among whom 84 students already had research outputs. A higher proportion of students with outputs was motivated by the requirements for graduation or employment compared to students without outputs (71.4% vs 55.2%, P  =  .046).Senior 8-year-program medical students in China generally had high pressure to conduct research and devoted their efforts to overcome these challenges. More guidance and novel encouragement to enhance students' initiative and interest in research could be provided by medical schools and educators in the future.


Assuntos
Estudantes de Medicina , Escolha da Profissão , China , Estudos Transversais , Humanos , Inquéritos e Questionários
14.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208962

RESUMO

Betulinic acid (BA) and its derivatives exhibit a variety of biological activities, especially their anti-HIV-1 activity, but generally have only modest inhibitory potency against influenza virus. The entry of influenza virus into host cells can be competitively inhibited by multivalent derivatives targeting hemagglutinin. In this study, a series of hexa-, hepta- and octavalent BA derivatives based on α-, ß- and γ-cyclodextrin scaffolds, respectively, with varying lengths of flexible oligo(ethylene glycol) linkers was designed and synthesized using a microwave-assisted copper-catalyzed 1,3-dipolar cycloaddition reaction. The generated BA-cyclodextrin conjugates were tested for their in vitro activity against influenza A/WSN/33 (H1N1) virus and cytotoxicity. Among the tested compounds, 58, 80 and 82 showed slight cytotoxicity to Madin-Darby canine kidney cells with viabilities ranging from 64 to 68% at a high concentration of 100 µM. Four conjugates 51 and 69-71 showed significant inhibitory effects on influenza infection with half maximal inhibitory concentration values of 5.20, 9.82, 7.48 and 7.59 µM, respectively. The structure-activity relationships of multivalent BA-cyclodextrin conjugates were discussed, highlighting that multivalent BA derivatives may be potential antiviral agents against influenza infection.


Assuntos
Antivirais , Ciclodextrinas/química , Vírus da Influenza A Subtipo H1N1/metabolismo , Infecções por Orthomyxoviridae/tratamento farmacológico , Triterpenos Pentacíclicos/química , Animais , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Cães , Avaliação Pré-Clínica de Medicamentos , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/metabolismo , Relação Estrutura-Atividade , Ácido Betulínico
16.
J Med Chem ; 63(24): 15371-15388, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33201699

RESUMO

Fatal infectious diseases caused by HIV-1, influenza A virus, Ebola virus, and currently pandemic coronavirus highlight the great need for the discovery of antiviral agents in mechanisms different from current viral replication-targeted approaches. Given the critical role of virus-host interactions in the viral life cycle, the development of entry or shedding inhibitors may expand the current repertoire of antiviral agents; the combination of antireplication inhibitors and entry or shedding inhibitors would create a multifaceted drug cocktail with a tandem antiviral mechanism. Therefore, we provide critical information about triterpenoids as potential antiviral agents targeting entry and release, focusing specifically on the emerging aspect of triterpenoid-mediated inhibition of a variety of virus-host membrane fusion mechanisms via a trimer-of-hairpin motif. These properties of triterpenoids supply their host an evolutionary advantage for chemical defense and may protect against an increasingly diverse array of viruses infecting mammals, providing a direction for antiviral drug discovery.


Assuntos
Antivirais/uso terapêutico , Vírus de RNA/efeitos dos fármacos , Triterpenos/uso terapêutico , Internalização do Vírus/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , SARS-CoV-2/efeitos dos fármacos , Relação Estrutura-Atividade , Eliminação de Partículas Virais/efeitos dos fármacos
17.
Eur J Med Chem ; 205: 112664, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755747

RESUMO

The antiviral activity of pentacyclic triterpenes has attracted increasing attention. However, the detailed antiviral mechanism remains fully unclear. In the present study, four C28 or C30 modified pentacyclic triterpene probes via conjugating with rhodamine B were designed and synthesized, and their anti-influenza virus activity was evaluated. The results indicated that two compounds 14 and 23 showed significant antiviral activity to influenza A/WSN/33 (H1N1) virus in Madin-Darby canine kidney (MDCK) cells with IC50 values of 8.36 and 8.24 µM, respectively. The mechanism of action studies of representative probe 23 indicated that it could inhibit the membrane fusion by binding with influenza virus hemagglutinin (HA), and the apparent dissociation constant (KD) value for probe 23-HA interaction was successfully evaluated (1.78 × 10-5 M) using surface plasmon resonance spectroscopy. In addition, the subcellular localization of probe 23 in MDCK cells was determined by confocal microscopy and flow cytometry, and the results suggested that fluorescent probe 23 was rapidly taken up in MDCK cells and accumulated in cytoplasm, but no antiviral activity was observed after its entry into cells. The present study further confirmed our previous finding that pentacyclic triterpenes could tightly bind to the viral envelope HA protein, thus blocking the virus entry into host cells.


Assuntos
Antivirais/química , Antivirais/farmacologia , Corantes Fluorescentes/química , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Rodaminas/química , Triterpenos/química , Triterpenos/farmacologia , Animais , Antivirais/metabolismo , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Triterpenos/metabolismo , Internalização do Vírus/efeitos dos fármacos
18.
Mol Pharm ; 17(7): 2546-2554, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32426985

RESUMO

Naturally occurring pentacyclic triterpenes, such as betulinic acid (BA) and its derivatives, exhibit various pharmaceutical activities and have been the subject of great interest, in particular for their antiviral properties. Here, we found a new anti-influenza virus conjugate, hexakis 6-deoxy-6-[4-N-(3ß-hydroxy-lup-20(29)-en-28-oate)aminomethyl-1H-1,2,3-triazol-1-yl]-2,3-di-O-acetyl-α-cyclodextrin (CYY1-11, 1), in a mini library of pentacyclic triterpene-cyclodextrin conjugates by performing a cell-based screening assay and then exploring the underlying mechanisms. Our results showed that conjugate 1 possessed a high-level activity against the influenza virus A/WSN/33 with an IC50 value of 5.20 µM (SI > 38.4). The study of the mechanism of action indicated that conjugate 1 inhibited viral replication by directly targeting the influenza hemagglutinin protein (KD = 1.50 µM), thus efficiently preventing the attachment of the virion to its receptors on host cells and subsequent infection. This study suggests that multivalent BA derivatives have possible use as a new class of influenza virus entry inhibitors.


Assuntos
Antivirais/química , Antivirais/farmacologia , Hemaglutininas/metabolismo , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Triterpenos Pentacíclicos/química , Triazóis/farmacologia , Internalização do Vírus/efeitos dos fármacos , Células A549 , Animais , Antivirais/síntese química , Antivirais/uso terapêutico , Ciclodextrinas/química , Cães , Hemaglutininas/química , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H1N1/patogenicidade , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Espectrometria de Massas , Ligação Proteica , Triazóis/síntese química , Triazóis/química , Triazóis/uso terapêutico , Ácido Betulínico
20.
Bioorg Med Chem ; 27(23): 115147, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31635892

RESUMO

Viral entry inhibitors are of great importance in current efforts to develop a new generation of anti-influenza drugs. Inspired by the discovery of a series of pentacyclic triterpene derivatives as entry inhibitors targeting the HA protein of influenza virus, we designed and synthesized 32 oleanolic acid (OA) analogues in this study by conjugating different amino acids to the 28-COOH of OA. The antiviral activity of these compounds was evaluated in vitro. Some of these compounds revealed impressive anti-influenza potencies against influenza A/WSN/33 (H1N1) virus. Among them, compound 15a exhibited robust potency and broad antiviral spectrum with IC50 values at the low-micromolar level against four different influenza strains. Hemagglutination inhibition (HI) assay and docking experiment indicated that these OA analogues may act in the same way as their parent compound by interrupting the interaction between HA protein of influenza virus and the host cell sialic acid receptor via binding to HA, thus blocking viral entry.


Assuntos
Antivirais/química , Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Aminoácidos/síntese química , Aminoácidos/química , Aminoácidos/farmacologia , Animais , Antivirais/síntese química , Cães , Desenho de Fármacos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/metabolismo , Células Madin Darby de Rim Canino , Simulação de Acoplamento Molecular , Ácido Oleanólico/síntese química , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/metabolismo , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA